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Abstract: A hydraulic jump is a sudden rapid transition from a super- to a sub-critical flow. At large inflow 

Froude numbers, the jump is characterised by a significant amount of entrained air. Herein the bubbly two-

phase flow properties of steady and strong hydraulic jumps were investigated experimentally. The results 

demonstrate the strong air entrainment rate, and the depth-averaged void fraction data highlight a rapid de-

aeration of the jump roller. The results suggest that the hydraulic jumps are effective aerators and that the 

rate of detrainment is comparatively smaller at the largest Froude numbers. 
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INTRODUCTION 

The hydraulic jump is a classical flow situation defined as the rapid transition from a supercritical open 

channel flow to a subcritical flow. At prototype scales, the jump is characterised by a highly turbulent flow 

region with macro-scale vortices, that is called the roller, associated with significant kinetic energy 

dissipation and a bubbly two-phase flow region. Figures 1A and 1B show two photographs of hydraulic 

jumps for different inflow conditions highlighting the substantial aeration of the roller. The bubbly two-

phase flow is caused by the strong interaction between the turbulence structures and the free surface at the 

impingement of the supercritical flow with the roller, leading to some air entrapment. Generally the air 

bubble entrainment takes place when the turbulent stresses overcome both surface tension and viscous forces 

(Ervine and Falvey 1987, Chanson 1997). 

Bubbly flow measurements in hydraulic jumps were first performed by Rajaratnam (1962). Resch et al. 

(1974) and Babb and Aus (1981) conducted some hot-film probe measurements in the bubbly flow region 

and Resch et al. (1974) showed in particular the effects of upstream flow conditions of the air-water flow 

properties in the jump roller. Chanson (1995) highlighted the presence of a local maximum void fraction in 

the shear layer of hydraulic jumps with partially-developed inflow: that is, when the upstream flow is not 

fully-developed and turbulent boundary layer does not extend up to the free-surface. Chanson and Brattberg 

(2000) and Murzyn et al. (2005,2007) showed some seminal bubbly flow features in steady and weak 

hydraulic jumps respectively. Turbulence measurements in hydraulic jumps were conducted also by Rouse et 

al. (1959), Liu et al. (2004), Chanson (2007) and Kucukali and Chanson (2008), although the first study was 

conducted in a wind tunnel, and the second was restricted to low Froude numbers (Fr1 < 3.3). 

Despite all these advances, the knowledge into the bubbly two-phase flow region remains limited. The 
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present study examines in detail the two-phase flow properties in hydraulic jumps. The analysis is based 

upon some experimental results conducted in a relatively large facility covering a wide range of inflow 

Froude numbers. It is the aim of this work to characterise the bubbly flow properties in steady and strong 

hydraulic jumps. 

 

Dimensional considerations 

An experimental investigation performed with geometrically similar models must be based upon a sound 

similitude. For a hydraulic jump in a horizontal rectangular channel, a dimensional analysis shows that the 

parameters affecting the air-water flow properties at a position (x, y) include the fluid properties, the channel 

properties, and the inflow conditions properties (Wood 1991, Chanson 1997). After limited simplifications, it 

yields a series of dimensionless relationships in terms of the two-phase flow properties (Chanson and 

Gualtieri 2008): 
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where C is the void fraction, F is the bubble count rate, V is the velocity, x is the coordinate in the flow 

direction measured from the nozzle, y is the vertical coordinate, d1 and V1 are respectively the upstream flow 

depth and velocity, x1 is the distance from the upstream gate, ,  and  are the water density, dynamic 

viscosity and surface tension respectively, W is the channel width and  is the upstream boundary layer 

thickness (Fig. 2). Equation (1) expresses the dimensionless two-phase flow properties (left handside terms) 

at a dimensionless position (x/d1, y/d1) within the roller as functions of the dimensionless inflow properties 

and channel geometry. In the right side, the 4th and 5th terms are the inflow Froude and Reynolds numbers 

respectively, and the 6th term is the Morton number. The Morton number is a function only of fluid 

properties and gravity constant. When water and air are used in both laboratory and prototype, the Morton 

number is invariant (Wood 1991, Crowe et al. 1998, Chanson 2009). The two key dimensionless parameters 

are the inflow Froude number Fr1 = 11 dg/V  and Reynolds number Re = ×q/ where q is the flow rate 

per unit width. 

In an undistorted geometrically similar model of a hydraulic jump, the dynamic similarity is achieved if each 

dimensionless parameter has the same value in model and prototype. The turbulent processes and air 

entrapment in the shear region are dominated by viscous forces. Dynamic similarity of air entrainment in 

hydraulic jumps becomes impossible because the Froude and Reynolds numbers cannot be both equal in 

model and prototype, unless at full scale. A Froude similitude is commonly used in the study of hydraulic 

jump and the Reynolds numbers are typically smaller at laboratory conditions (Henderson 1966). A number 

of studies showed that the air entrainment in small size laboratory models might be drastically 

underestimated (Rao and Kobus 1971, Wood 1991, Chanson 1997). Some recent investigations performed 

some Froude similar experiments with 5.1 < Fr1 < 8.5 and Reynolds numbers between 2.4×104 and 9.8×104 

(Chanson and Gualtieri 2008, Murzyn and Chanson 2008). The results showed some drastic scale effects in 
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the smaller hydraulic jumps (Re < 4×104) in terms of the distributions of void fraction, bubble count rate and 

bubble size, but the issue of scale effects is still not settled. 

 

EXPERIMENTAL FACILITY AND INSTRUMENTATION 

The experiments were performed in a horizontal rectangular flume at the Gordon McKay Hydraulics 

Laboratory of University of Queensland. The channel length and width were 3.2 m and 0.50 m respectively. 

The sidewall height was 0.45 m. The sidewalls were made of 3.2 m long glass panels and the channel bed 

was in smooth PVC. This channel was previously used by Chanson (2007), Kucukali and Chanson (2008) 

and Murzyn and Chanson (2009). Photographs of the experimental facility are shown in Figure 1 and further 

details on the apparatus, instrumentation and data sets are reported in Chanson (2009b). 

The water discharge was measured with a Venturi meter installed in the supply line and calibrated in-situ 

with a large V-notch weir. The discharge accuracy was within 2%. The clear-water flow depths were 

measured using rail mounted point gauges within 0.5 mm. The inflow conditions were controlled by a 

vertical gate with a semi-circular rounded shape ( = 0.3 m). The clear-water velocities were measured with 

a Prandtl-Pitot tube (Ø = 3.02 mm) based on the Prandtl design. 

The two-phase flow properties were measured with a double-tip conductivity probe. The conductivity probe 

is a phase-detection intrusive probe designed to pierce the bubbles. It is based on the difference in electrical 

resistance between air and water (Crowe at al. 1998, Chanson 2002). In the present study, the probe was 

equipped with two identical sensors with an inner diameter of 0.25 mm. The distance between probe tips was 

x = 6.96 mm. The probe was manufactured at the University of Queensland and was previously used in 

several studies, including Kucukali and Chanson (2008). The displacement and the position of the probe in 

the vertical direction were controlled by a fine adjustment system connected to a Mitutoyo digimatic scale 

unit with a vertical accuracy y of less than 0.1 mm. The analysis of the probe signal output was based upon 

a single threshold technique and the threshold was set between 45% and 55% of the air-water voltage range. 

A number of two-phase flow properties were derived from the signal analysis. These include the void 

fraction C, or air concentration, defined as the volume of air per unit volume of air and water, the bubble 

count rate F defined as the number of bubbles impacting the probe tip per second, and the bubble chord size 

distribution. The air-water interfacial velocity V was estimated as V = x/T where x is the longitudinal 

distance between both tips (x = 6.96 mm here) and T is the average air-water interfacial time between the 

two probe sensors with T being deduced from a cross-correlation analysis (Crowe et al. 1998, Chanson 

1997,2002). 

 

EXPERIMENTAL FLOW CONDITIONS 

A first series of experiments investigated the general hydraulic jump properties, including upstream and 

downstream depths, and jump toe fluctuation frequency (Table 1). In the second series, some detailed two-

phase flow measurements were performed using the double-tip probe, and the flow conditions are reported in 
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Table 1. 

For all experiments, the jump toe was located at x1 = 0.75 m and the same upstream rounded gate opening h 

= 0.018 m was used for the whole study. For these conditions, the inflow depth ranged from d1 = 0.0178 to 

0.019 m depending upon the flow rate (Table 1), and the inflow was characterised by a partially-developed 

boundary layer (/d1 = 0.4 to 0.6). Further the upstream flow was little aerated. Some vertical profiles of the 

void fraction were measured at a location 0.2 m upstream of the jump toe and the data show that the depth-

averaged void fraction Cmean is less or equal to 0.11, where Cmean is defined as: 

  
90Y

0

mean dyCC  (2) 

with y the distance normal to the invert, C the local void fraction and Y90 the vertical distance from the bed 

where C = 0.9. 

In the present study, the experiments are conducted primarily with large Froude numbers (Fr1 > 7) and large 

Reynolds numbers (Re > 5104). 

 

BASIC FLOW PATTERNS 

A basic feature of hydraulic jumps is the rapid rise of the free surface immediately downstream of the jump 

toe. The free-surface is strongly turbulent with large vertical fluctuations and a bubbly/foamy structure as 

shown in Figure 1 for two Froude numbers. Figure 3 presents the ratio of the downstream to upstream depths 

d2/d1 as a function of the inflow Froude number Fr1. The experimental data are compared with the 

application of the equation of conservation of momentum: 
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where Fr1 is the inflow Froude number. Equation (3) is compared with the experimental observations in 

Figure 3 illustrating a good agreement except at the largest Froude number. In that case (Fr1 = 11.2), the 

jump roller interferes with the downstream overshot gate. 

The dimensionless roller length and bubbly flow region length are also presented in Figure 3. Herein the 

roller length Lr is defined as the location where the water surface was quasi-horizontal and the downstream 

depth is measured as sketched in Figure 2. The length Lair of the bubbly flow region was determined through 

some sidewall observations of the entrained air bubbles: i.e., Lair is the average length of the bubbly flow 

region. The present data are qualitatively in agreement with the correlations of Hager et al. (1990) and 

Murzyn et al. (2007) developed for Fr1 < 8 and 5 respectively, although both correlations tended to 

underestimate the jump length by 20-30% (Fig. 3). For the present data set, Lr and Lair are best correlated by: 
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The horizontal oscillations of the jump toe were recorded. These oscillations had relatively small amplitudes 

and their frequencies were estimated. The results are presented in Figure 4 in terms of the Strouhal number 

defined as St = Ftoe×d1/V1 where Ftoe is the toe oscillation frequency. The data are compared with some 

earlier studies of jump toe oscillations (Fig. 4). The present jump toe data yield in average St  0.005 that are 

close to the findings of Mossa and Tolve (1998), Chanson (2007) and Murzyn and Chanson (2009). The 

comparative results show that there was no evident relationship between Strouhal and Reynolds numbers 

(Fig. 4). 

 

BUBBLY FLOW PROPERTIES OF HYDRAULIC JUMPS 

The hydraulic jumps are characterised by strong air bubble entrainment, spray and splashing (Fig. 1). Herein 

the two-phase flow measurements were conducted for five inflow Froude numbers ranging from 5.1 to 11.2 

with a focus on the largest Froude numbers. 

In hydraulic jumps with partially-developed inflow, the turbulent shear layer corresponds to an advective 

diffusion region in which the void fractions distributions exhibit a peak in the turbulent shear region (Resch 

et al. 1974, Chanson 1995). This is illustrated in Figures 5 and 6. Figure 5 presents some dimensionless 

distributions of void fraction along the hydraulic jump for two Froude numbers (Fr1 = 9.2 and 11.2). The 

characteristic location Y90/d1 where the void fraction equals 0.90 is also shown (thick dashed line). It 

characterised the location of the roller's upper free-surface. Within the roller (y < Y90), the void fraction 

profiles present a characteristic shape. The void fraction is about zero next to the invert. A local maximum 

(C = Cmax) is observed in the shear layer as sketched in Figure 2. Close the free-surface, the void fraction 

increases rapidly towards unity. 

In the air-water shear layer, the void fraction distributions follow closely an analytical solution of the 

advective diffusion equation for air bubbles (Chanson 1995): 
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where D# is a dimensionless diffusivity: )dV/(DD 11t
#  , Dt is the air bubble diffusivity, d1 and V1 are 

respectively the inflow depth and velocity, and YCmax is the distance from the bed where C = Cmax (Fig. 2). 

Equation (6) is compared with some data in Figure 6 at four longitudinal locations in a hydraulic jump. The 

results illustrate the advective diffusion process with a broadening of the air-water shear region and the lesser 

maximum void fraction with increasing distance from the jump toe. Note that the void fraction is small at 

about mid-depth of the flow (Fig. 6). It is believed that this is related to the intense advective diffusion 

process at the largest Froude numbers: i.e., the air bubbles are advected downstream very rapidly and do not 

have time to migrate to the upper flow region. This yields a low void fraction layer between the air-water 

shear layer and the upper free-surface region as shown in Figure 6. 
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Figure 7 presents some dimensionless distributions of bubble count rate Fd1/V1 along the hydraulic jump 

for the same flow conditions shown in Figure 5. The characteristic location Y90/d1 is shown also. For any 

bubble shape and size distribution, the bubble count rate is proportional to the air-water interface area, and 

inversely proportional to the average bubble size for a given void fraction. It is simply proportional to the 

local rate of re-aeration. In the hydraulic jump roller, the vertical profiles of bubble count rate present a 

distinct, maximum count rate in the air-water shear layer: i.e., y/d1 ~ 1 to 2 in Figure 7 depending upon the 

longitudinal location. The local maximum bubble count rate in the shear layer is believed to be linked with 

the region of maximum shear stress. Above, the bubble count rate decreases with increasing distance from 

the invert, and it is equal to zero fro C = 1 (and C = 0). 

Some two-phase velocity measurements were conducted in the bubbly flow region with the dual-tip probe 

based upon the mean interfacial travel time between the probe sensors (x = 6.96 mm). Some typical results 

are presented in Figure 8 for two Froude numbers (Fr1 = 7.5 and 10.0). The graphs present the dimensionless 

vertical distributions of interfacial velocities V/V1 in the hydraulic jump roller. The dimensionless location of 

the measurement section is given in the legend. At the channel bed, a no-slip condition imposes V(y=0) = 0. 

All the velocity profiles exhibit a similar shape despite some scatter. They follow the wall jet equations 

(Rajaratnam 1965, Chanson and Brattberg 2000). In the recirculation region above the shear layer, the 

present data indicate some negative time-averaged velocities (Fig. 8). While the probe design was not 

intended for some negative velocity measurements, the results show that the recirculation motion is 

qualitatively observed with the dual-tip probe. 

The bubble chord size measurements show a broad spectrum of bubble sizes at each location. The range of 

bubble sizes extend over several orders of magnitude from less than 0.5 mm to more than 20 mm. Their 

distributions are skewed with a preponderance of small bubbles relative to the mean. In Figures 9A and 9B 

corresponding to the air-water shear region, the probability of bubble size is the largest for chord times 

between 0 and 0.5 mm although the mean size was between 2 and 6 mm. The probability distribution 

functions of bubble size followed typically a log-normal distribution; a similar finding was observed by 

Resch et al. (1974) and Chanson (2007). Figure 9 shows some typical normalised bubble chord size 

distributions in the developing shear layer. For each graph, the caption provides the location (x-x1, y/d1), the 

local air-water flow properties (C, F, V) and the average bubble size. The histogram columns represent each 

the probability of droplet chord time in a 0.5 mm chord interval. For example, the probability of bubble 

chord from 1 to 1.5 mm is represented by the column labelled 1 mm. Bubble sizes larger than 10 mm are 

regrouped in the last column (> 10 mm). 

 

DISCUSSION 

In the design of hydraulic structures and stilling basins, a relevant design parameter is the depth-averaged 

void fraction and the rate of air entrainment. In some cases, the flow aeration must be maximised: e.g., for re-

oxygenation purposes. In others situations, it must be prevented or reduced: e.g., effect of flow bulking on 

sidewall heights. In each case, the amount of air entrainment and the air-water flow properties must be 
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accurately predicted to optimise the system performances and to insure a safe operation. 

Figure 10 presents the longitudinal distributions of depth-averaged void fraction Cmean in the hydraulic jump. 

Cmean is defined by Equation (2) and characterises the amount of entrained air since Cmean = Qair/(Q+Qair) 

where Q is the water discharge and Qair is the rate of air entrainment. The present data show consistently a 

large rate of air entrainment in the jump as well as a rapid de-aeration of the flow with increasing distance 

from the jump toe (Fig. 10A). For the present data set, the longitudinal decay in depth-averaged void fraction 

is best correlated by: 
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Equation (7) is compared with the present data set in Figure 10B. The agreement is reasonable with a 

normalised correlation coefficient of 0.947. The results imply a depth-averaged void fraction proportional to 

Fr1
1/5 as well as a lower de-aeration rate with increasing Froude number. That is, the rate of detrainment is 

comparatively smaller at the largest Froude numbers (Fig. 10A & Eq. (5)). 

For comparison, the experimental data of Rajaratnam (1962) and Mossa and Tolve (1998) are shown in 

Figure 10A where they are compared with the present data set. Note that Rajaratnam (1962) and Mossa and 

Tolve (1998) calculated their mean void fraction as an arithmetic mean rather than using Equation (2). The 

arithmetic mean is not a true depth-averaged void fraction (Eq. (2)). 

 

CONCLUSION 

Some detailed two-phase flow measurements were conducted in steady and strong hydraulic jumps with 

partially-developed inflow. The measurements of jump toe fluctuations are close to earlier studies. The void 

fraction distributions present a local maximum in the air-water shear layer where the distributions of void 

fractions are modelled by an advective diffusion equation. The shear zone is also characterised by a 

maximum in bubble count rate. The experimental observations highlight a strong air entrainment rate. The 

depth-averaged void fraction data demonstrate a large amount of entrained air as well as a rapid de-aeration 

of the jump roller, although the de-aeration is comparatively smaller at the largest Froude numbers. 

The results suggest that the hydraulic jumps are effective aerators and that the dimensionless air content is 

retained longer at the largest Froude numbers, and thus these jumps are better suited for use as an aeration 

device. 
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NOTATION 

C void fraction defined as the volume of air per unit volume of air and water; 

Cmax local maximum in void fraction in the developing shear layer; 

Cmean depth averaged void fraction: 

  
90Y

0

mean dyCC  

Dt air bubble diffusivity (m2/s) in the air-water shear layer; 

D# dimensionless air bubble diffusivity: D# = Dt/(V1d1); 

d1 flow depth (m) measured immediately upstream of the hydraulic jump; 

F bubble count rate (Hz) defined as the number of bubbles impacting the probe sensor per second; 

Fmax maximum bubble count rate (Hz) in the air-water shear layer; 

Ftoe hydraulic jump toe oscillation frequency (Hz); 

Fr1 upstream Froude number: 111 dg/VFr  ; 
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g gravity acceleration (m/s2) : g = 9.80 m/s2 in Brisbane (Australia); 

h sluice gate opening (m); 

K dimensionless constant; 

Lair hydraulic jump bubbly flow region length (m); 

Q water discharge (m3/s); 

Qair air flow rate (m3/s); 

Re Reynolds number:  /dVRe 11 ; 

T average air-water interfacial travel time (s) between the two probe sensors; 

V air-water velocity (m/s); 

V1 upstream flow velocity (m/s): V1 = Q/(Wd1); 

W channel width (m); 

x longitudinal distance from the upstream sluice gate (m); 

x1 longitudinal distance from the upstream gate to the jump toe (m); 

YCmax vertical elevation (m) where the void fraction in the shear layer is maximum (C = Cmax); 

YFmax distance (m) from the bed where the bubble count rate is maximum (F = Fmax); 

Y90 characteristic distance (m) from the bed where C = 0.90; 

y distance (m) measured normal to the flow direction; 

x longitudinal distance (m) between probe sensors; 

 boundary layer thickness (m); 

 dynamic viscosity (Pa.s) of water; 

 density (kg/m3) of water. 
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Table 1 - Experimental flow conditions 

 

Ref. Q W x1 V1 d1  Fr1 Re Remarks 
 m3/s m m m/s m    

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Series 1        General observations 
2 0.0147 0.5 0.75 1.55 0.019 3.58 2.9E+4  
3 0.0166 0.5 0.75 1.75 0.019 4.05 3.3E+4  
1 0.02225 0.5 0.75 2.34 0.019 5.42 4.4E+4  
5 0.0282 0.5 0.75 3.13 0.018 7.46 5.6E+4  
4 0.03255 0.5 0.75 3.52 0.0185 8.26 6.5E+4  
6 0.0367 0.5 0.75 4.08 0.018 9.70 7.3E+4  
7 0.0399 0.5 0.75 4.43 0.018 10.55 7.9E+4  
8 0.0470 0.5 0.75 5.22 0.018 12.43 9.3E+4  

Series 2        Two-phase flow measurements 
090331 0.02025 0.5 0.75 2.19 0.0185 5.14 4.0E+4  
090317 0.02825 0.5 0.75 3.14 0.018 7.47 5.6E+4  
090720 0.03481 0.5 0.75 3.87 0.018 9.21 6.9E+4  
090713 0.03780 0.5 0.75 4.20 0.018 10.0 7.5E+4  
090414 0.04175 0.5 0.75 4.68 0.01783 11.2 8.3E+4  

 

 

Table 2 - Probability distribution functions of bubble chords in the shear layer for Fr1 = 11.2, Re = 8.3×104, 

d1 = 0.01783 m, x1 = 0.75 m (Fig. 9) 

 

x-x1 (m) y/d1 V (m/s) C F (Hz) Average 
chord size 

(mm) 

No. bubbles 

0.225 1.04 3.09 0.217 189.1 3.78 8510 
 1.32 2.90 0.351 211.9 5.73 9540 
 1.60 2.78 0.382 194.2 5.97 8740 

0.400 0.76 2.90 0.101 133.8 2.19 6020 
 1.32 2.78 0.198 180.8 3.10 8140 
 1.88 2.28 0.207 158.0 3.00 7110 
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LIST OF CAPTIONS 

Fig. 1 - Air entrainment in hydraulic jumps 

(A) Fr1 = 7.5, Re = 5.6×104, d1 = 0.018 m, x1 = 0.75 m, x-x1 = 0.150 m, shutter speed: 1/80 s 

(B) Fr1 = 10.0, Re = 7.5×104, d1 = 0.018 m, x1 = 0.75 m, x-x1 = 0.350 m, shutter speed: 1/80 s 

 

Fig. 2 - Definition sketch of the bubbly two-phase flow region in hydraulic jumps 

 

Fig. 3 - Ratio of the conjugate depths d2/d1, dimensionless roller length Lr/d1 and bubble flow region length 

Lair/d1 as functions of the inflow Froude number Fr1 - Comparison between experimental data and the 

solution of the momentum equation 

 

Fig. 4 - Jump toe oscillations: Strouhal number data 

 

Fig. 5 - Dimensionless distribution of void fraction C - Horizontal axis: 0.1(x-x1)/d1 + C 

(A) Fr1 = 9.2, Re = 6.9×104, d1 = 0.018 m, x1 = 0.75 m 

(B) Fr1 = 11.2, Re = 8.3×104, d1 = 0.01783 m, x1 = 0.75 m 

 

Fig. 6 - Void fraction distributions in a hydraulic jump with partially-developed inflow conditions: x1 = 0.75 

m, d1 = 0.018 m, Fr1 = 9.2, Re = 6.9×104, x-x1 = 0.225, 0.30, 0.45 and 0.60 m- Comparison between 

experimental data (Present study) and mathematical solution 

(A, Left) x-x1 = 0.225 m; (B, Right) x-x1 = 0.35 m 

(C, Left) x-x1 = 0.45 m; (D, Right) x-x1 = 0.60 m 

 

Fig. 7 - Dimensionless distribution of bubble count rate F×d1/V1 - Horizontal axis: 0.1(x-x1)/d1 + F×d1/V1 

(A) Fr1 = 9.2, Re = 6.9×104, d1 = 0.018 m, x1 = 0.75 m 

(B) Fr1 = 11.2, Re = 8.3×104, d1 = 0.01783 m, x1 = 0.75 m 

 

Fig. 8 - Dimensionless velocity distributions V/V1 in hydraulic jumps - Horizontal axis: 0.1(x-x1)/d1 + V/V1 

(A) Fr1 = 7.5, Re = 5.6×104, d1 = 0.018 m, x1 = 0.75 m 

(B) Fr1 = 10.0, Re = 7.5×104, d1 = 0.018 m, x1 = 0.75 m 
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Fig. 9 - Probability distribution functions of bubble chords in the shear layer: Fr1 = 11.2, Re = 8.3×104, d1 = 

0.01783 m, x1 = 0.75 m - Flow characteristics summarised in Table 2 

(A) x-x1 = 0.225 m 

(B) x-x1 = 0.400 m 

 

Fig. 10 - Dimensionless longitudinal distributions of depth-averaged void fraction Cmean in hydraulic jumps 

(A) Comparison between the present data and previous studies (Rajaratnam 1962, Mossa and Tolve 1998) 

(B) Comparison between experimental data and Equation (7) 
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Fig. 1 - Air entrainment in hydraulic jumps 

(A) Fr1 = 7.5, Re = 5.6×104, d1 = 0.018 m, x1 = 0.75 m, x-x1 = 0.150 m, shutter speed: 1/80 s 

 

(B) Fr1 = 10.0, Re = 7.5×104, d1 = 0.018 m, x1 = 0.75 m, x-x1 = 0.350 m, shutter speed: 1/80 s 
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Fig. 2 - Definition sketch of the bubbly two-phase flow region in hydraulic jumps 
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Fig. 3 - Ratio of the conjugate depths d2/d1, dimensionless roller length Lr/d1 and bubble flow region length 

Lair/d1 as functions of the inflow Froude number Fr1 - Comparison between experimental data and the 

solution of the momentum equation 
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Fig. 4 - Jump toe oscillations: Strouhal number data 
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Fig. 5 - Dimensionless distribution of void fraction C - Horizontal axis: 0.1(x-x1)/d1 + C 

(A) Fr1 = 9.2, Re = 6.9×104, d1 = 0.018 m, x1 = 0.75 m 
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(B) Fr1 = 11.2, Re = 8.3×104, d1 = 0.01783 m, x1 = 0.75 m 
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Fig. 6 - Void fraction distributions in a hydraulic jump with partially-developed inflow conditions: x1 = 0.75 

m, d1 = 0.018 m, Fr1 = 9.2, Re = 6.9×104, x-x1 = 0.225, 0.30, 0.45 and 0.60 m- Comparison between 

experimental data (Present study) and mathematical solution 

(A, Left) x-x1 = 0.225 m; (B, Right) x-x1 = 0.35 m 
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(C, Left) x-x1 = 0.45 m; (D, Right) x-x1 = 0.60 m 
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Fig. 7 - Dimensionless distribution of bubble count rate F×d1/V1 - Horizontal axis: 0.1(x-x1)/d1 + F×d1/V1 

(A) Fr1 = 9.2, Re = 6.9×104, d1 = 0.018 m, x1 = 0.75 m 
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(B) Fr1 = 11.2, Re = 8.3×104, d1 = 0.01783 m, x1 = 0.75 m 
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Fig. 8 - Dimensionless velocity distributions V/V1 in hydraulic jumps - Horizontal axis: 0.1(x-x1)/d1 + V/V1 

(A) Fr1 = 7.5, Re = 5.6×104, d1 = 0.018 m, x1 = 0.75 m 
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(B) Fr1 = 10.0, Re = 7.5×104, d1 = 0.018 m, x1 = 0.75 m 
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Fig. 9 - Probability distribution functions of bubble chords in the shear layer: Fr1 = 11.2, Re = 8.3×104, d1 = 

0.01783 m, x1 = 0.75 m - Flow characteristics summarised in Table 2 

(A) x-x1 = 0.225 m 
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(B) x-x1 = 0.400 m 
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Fig. 10 - Dimensionless longitudinal distributions of depth-averaged void fraction Cmean in hydraulic jumps 

(A) Comparison between the present data and previous studies (Rajaratnam 1962, Mossa and Tolve 1998) 
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(B) Comparison between experimental data and Equation (7) 
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