522 research outputs found

    Critical mutation rate has an exponential dependence on population size in haploid and diploid populations

    Get PDF
    Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events

    Theory and practice of optimal mutation rate control in Hamming spaces of DNA sequences

    Get PDF
    We investigate the problem of optimal control of mutation by asexual self-replicating organisms represented by points in a metric space. We introduce the notion of a relatively monotonic fitness landscape and consider a generalisation of Fisher's geometric model of adaptation for such spaces. Using a Hamming space as a prime example, we derive the probability of adaptation as a function of reproduction parameters (e.g. mutation size or rate). Optimal control rules for the parameters are derived explicitly for some relatively monotonic landscapes, and then a general information-based heuristic is introduced. We then evaluate our theoretical control functions against optimal mutation functions evolved from a random population of functions using a meta genetic algorithm. Our experimental results show a close match between theory and experiment. We demonstrate this result both in artificial fitness landscapes, defined by a Hamming distance, and a natural landscape, where fitness is defined by a DNA-protein affinity. We discuss how a control of mutation rate could occur and evolve in natural organisms. We also outline future directions of this work

    Environmental pleiotropy and demographic history direct adaptation under antibiotic selection

    Get PDF
    Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated—termed ‘environmental pleiotropy’—may determine which alleles are ultimately favoured. A population’s demographic history—its size over time—influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness—i.e., neutral pleiotropy—above and below the sensitive strain’s minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution

    Critical mutation rate has an exponential dependence on population size for eukaryotic-length genomes with crossover

    Get PDF
    The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers. We also identify an inverse relationship between CMR and the number of genes, confirming that, for a similar number of genes to that for the plant Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for additional organisms were also found to be within one order of magnitude of the CMR. This is the first time such a simulation model has been assigned input and produced output within range for a given biological organism. The decrease in CMR with population size previously observed is maintained; there is potential for the model to influence understanding of populations undergoing bottleneck, stress, and conservation strategy for populations near extinction

    Monotonicity of fitness landscapes and mutation rate control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Opposing effects of final population density and stress on Escherichia coli mutation rate

    Get PDF
    Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 10  cells ml ). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution

    Spontaneous mutation rate is a plastic trait associated with population density across domains of life

    Get PDF
    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life

    Knowing your place and commanding space:de/constructions of gendered embodiment in mixed-sex karate

    Get PDF
    Feminists have long acknowledged that gendered divisions in access to spaces of leisure, and how women and men physically take up that space, reproduces gender inequality. This article will explore how karate practitioners participate in the space of mixed-sex karate practice and how such uses of space de/construct gendered embodiments and a gender hierarchy. Data presented is drawn from nine months of ethnographic emersion within three karate clubs and fifteen photo-elicitation interviews with karate participants from the three clubs. The findings of this paper suggest that whilst women often occupied spaces of expertise within the karate hall, gendered distinctions in uses of space emerged in the more subtle ways in which women and men used their voice, responded to the tacit and smelt dilemmas of sweat, and moved their bodies across physical space. This research highlights both the potential of physical leisure practice to ‘undo’ conventional gendered embodiments that particularly restrict women’s intentionality in the world (Young, 1980), and the power of spatially-attuned research to illuminate the minute ways in which unequal gender relations are naturalised, legitimised and done

    Strategic responses to global challenges: The case of European banking, 1973–2000

    Get PDF
    In applying a strategy, structure, ownership and performance (SSOP) framework to three major clearing banks (ABN AMRO, UBS, Barclays), this article debates whether the conclusions generated by Whittington and Mayer about European manufacturing industry can be applied to the financial services sector. While European integration plays a key role in determining strategy, it is clear that global factors were far more important in determining management actions, leading to significant differences in structural adaptation. The article also debates whether this has led to improved performance, given the problems experienced with both geographical dispersion and diversification, bringing into question the quality of decision-making over the long term

    ‘It used to be brutal, now it’s an art’:changing negotiations of violence and masculinity in British karate

    Get PDF
    In most western (and indeed eastern) cultures, fighting is seen as an ultimate symbol of masculinity – an embodied display of dominance, control and violence (Bourdieu, 2001). As a space legitimising and praising performances of mimetic violence (Dunning, 1999), combat sports provide an arena where the virtues of dominance and power at the heart of conceptions of orthodox masculinity (Anderson, 2010 ) or hegemonic masculinity (Connell, 2005) can be symbolically presented by men through bodily displays of strength, physical aggression, and the taking and overcoming of pain (Bourdieu, 2001; Messner, 1990; Wacquant, 2004). Yet, over the last twenty years the focus of karate in Britain has been perceived to shift from aggressive acts of 'hitting hard' to developing and displaying controlled, acrobatic and technically precise movements. Drawn from a nine-month ethnography and 7 semi-structured interviews, this chapter explores how British male karate practitioners re/negotiate ideas of masculinity and embodiments of a masculine identity in the context of karate’s changing emphasis on, and practices of, 'violence'. This paper suggests that a 'civilising' shift (Elias and Dunning, 1986) in the competition rules increases in women’s participation in karate with men, and subsequent negotiations of mimetic violence, complicate the use of violence as a symbol of praised masculine identity within British karate . A praised masculine identity is crafted by carefully blending traits conventional deemed feminine such as technical precision, elegance and agility alongside displays of strength and dominance. Such performances challenge conceptions of an orthodox sporting masculinity and notions of hierarchical gender distinction
    corecore