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Critical Mutation Rate has an 
Exponential Dependence on 
Population Size for Eukaryotic-
length Genomes with Crossover
Elizabeth Aston1, Alastair Channon   1, Roman V. Belavkin2, Danna R. Gifford3, Rok Krašovec3 
& Christopher G. Knight   3

The critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of 
individuals with greater mutational robustness (“flattest”). We identify an inverse relationship between 
CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no 
more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm 
the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and 
increases with the number of genetic crossovers. We also identify an inverse relationship between 
CMR and the number of genes, confirming that, for a similar number of genes to that for the plant 
Arabidopsis thaliana (25,000), the CMR is close to its known wild-type mutation rate; mutation rates for 
additional organisms were also found to be within one order of magnitude of the CMR. This is the first 
time such a simulation model has been assigned input and produced output within range for a given 
biological organism. The decrease in CMR with population size previously observed is maintained; there 
is potential for the model to influence understanding of populations undergoing bottleneck, stress, and 
conservation strategy for populations near extinction.

Fitter genotypes can be outcompeted by genotypes with greater robustness when the mutation rate exceeds a 
critical mutation rate (CMR); in terms of fitness landscapes, narrow high fitness peaks may be lost, while broader, 
lower peaks are maintained by a population of reproducing sequences. The greater the robustness, the smaller 
the effect of a mutation on fitness1. Most non-neutral mutations are detrimental to fitness2, therefore robustness 
can limit the damage each time a mutation occurs. This so called “ survival-of-the-flattest” has been observed 
in in silico evolving systems3–5, in theory5, in simulated RNA evolution6, and in RNA viruses7. CMR reduces 
exponentially at low population sizes in both haploid8 and diploid populations9, where the CMR is defined as 
the mutation rate at which 95% of runs lead to all individuals in the population losing the fitter, narrower peak 
in a two-peak landscape within 10,000 generations (Fig. 1). As population size falls, the CMR above which fitter 
alleles are lost transitions unexpectedly from near-constant to drop exponentially for small populations; the pre-
vious assumption in evolutionary biology was that the CMR remained near-constant irrespective of population 
size10. The relationship between population size and CMR closely reproduces the established mathematical rela-
tionship between population size and the mutation rate above which individuals lose all of the peaks, the “error 
threshold”9. The observation that CMR decreases with population size suggests small populations may be subject 
to survival-of-the-flattest at mutation rates lower than previously assumed. Endangered species often consist of 
small and fragmented populations; fragmentation, habitat destruction, and environmental stresses such as pollu-
tion, all contribute to a reduction in population size, which in turn has major effects on population genetics and 
demography11–13. Small population effects are relevant across the range of organisms, even microorganisms, that 
typically occur at large population sizes. Microbes can experience populations just as small as macro-organisms, 
for instance at the point of infection of a new host, or close to removal by a host immune system, and that will 
affect their evolution14. However, biological organisms typically have lengths and numbers of genes orders of 
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magnitude higher than those used in models of error thresholds or CMRs, so how relevant such models are to real 
biological populations remains an open question. To bridge the gap between artificial and biological evolution it 
is paramount that a model can be assigned parameter values that respect biological reality. Here we extend CMR 
theory to consider relevance of the parameters of gene length and the number of genes in organisms capable of 
undergoing chromosomal crossover, while respecting biologically-relevant mutation rates for eukaryotic organ-
isms (Table 1).

Figure 1.  Two-peak fitness landscape with one narrow peak of high fitness (peak 0), and one broader peak of 
lower fitness (peak 1). Each step on the x axis represents a single base mutation. Diagram adapted from Wilke4.

Species Genome size (Mbp) Mutation rate Base/genome Unit Source

Human 3080 × −1 10 8– . × −2 5 10 8 Per base Per generation 49,56,57

Human 3080 . ×1 75 102 Per genome Per generation 49

Human 3080 × −5 10 11– × −6 10 2 Per base Per cell division 46,57

Human 3080 . × −1 6 10 1 Per genome Per cell division 46

Human (Y chromosome) 58 × −3 10 8 Per base Per generation 61

Human, chimpanzee 3080 3 Per genome Per generation 50

.D  melanogaster 120 . × −4 65 10 9– . × −6 2 10 8 Per base Per generation 47,48,51,57

.D  melanogaster 120 . × −9 9 10 1–1.2 Per genome Per generation 47,50

Drosophila spp. 120 × −7 10 2 Per genome Per generation 50

.D  melanogaster 120 . × −1 3 10 10– . × −3 4 10 10 Per base Per cell division 46,57

Quail, chicken 1050 . × −4 9 10 1 Per genome Per generation 50

Sheep, cow 2870 × −9 10 1 Per genome Per generation 50

Old World Monkey 1.9 Per genome Per generation 50

Mouse, rat 2640 . × −9 1 10 1 Per genome Per generation 50

Mouse 2640 . × −1 8 10 10 Per base Per cell division 46

Mouse 2640 . × −1 1 10 8 Per base Per generation 46

.S  cerevisiae 12.1 . × −3 3 10 10 Per base Per generation 57

.S  cerevisiae 12.1 . × −3 3 10 10 Per base Per cell division 52

Average mammalian . × −2 2 10 9 Per base Per genome/year 55

Mammalian upper bound . × −2 61 10 9 Per base Per genome/year 55

.C  elegans 100 . × −8 4 10 9– . × −2 1 10 8 Per base Per generation 47,53,58

.C  elegans 100 2.9 Per genome Per generation 52

.A  thaliana 157 . × −7 1 10 9 Per base Per generation 54

.A  thaliana 157 . × −6 5 10 9 Per base Per generation 58

Table 1.  Mutation rates for various eukaryotic species. Mutation rate estimates were obtained by comparing 
pseudogenes (genes that do not code for proteins or are never expressed) in humans and chimpanzees49, 
combining the results of theoretical and empirical studies55, mutation accumulation and radiation 
experiments51, direct sequencing of the human Y chromosome61, computational analysis of genes from 
species of placental mammals55, whole-genome shotgun sequencing of mutation accumulation lines of 
the fruit fly Drosophila melanogaster48,51 and the nematode worm Caenorhabditis elegans53, examination of 
sequence variation in the human genome56, scanning the mitochondrial genome of D. melanogaster47, study 
of the complete genome of five Arabidopsis thaliana lines54, and complete genome sequencing of the yeast 
Sacccharomyces cerevisiae52. Other sources listed contain a range of estimates57,58.
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Eigen and Schuster15 theoretically determined the error threshold in terms of selection pressure and sequence 
length. Using this model, it was found that longer sequence lengths lead to lower error thresholds in genetic algo-
rithms16,17. Nowak18 theoretically determined the error threshold in terms of the relative fitness of mutant and wild 
type, concluding that increasing sequence length will decrease the error threshold. According to the drift-barrier 
hypothesis19, the strength of selection that reduces mutation rate through mutation-selection balance is countered by 
Ne-dependent genetic drift (where Ne is effective population size)20. Following this population size dependence, we 
hypothesise that, for increasing sequence lengths, the CMR will decrease with population size, and that this will occur 
in line with the exponential model identified in Aston et al.9. Increasing the length of the sequences, and therefore the 
size of the mutational landscape, will decrease the proportion of the landscape taken up by the peaks (Fig. 1). Assuming 
peak radii are kept constant, increasing the Hamming distance between the peaks will increase the number of neutral 
mutations it will take to move from one peak to another. However, the radius of the peaks and the Hamming distance 
between them are not expected to be independent. While increasing the distance between the peaks will increase the 
neutral space between them, increasing the radius of the peaks will simultaneously reduce the space. If the distance 
between the peaks is increased, and the radius of the peaks is also increased by the same magnitude (i.e., scaled by 
parameter S), there are three potential effects: the CMR will increase as S increases if the reduction in neutral space 
due to increased peak radius exceeds the increase in neutral space due to peak distance, it will decrease if the opposite 
is true, or it will stay the same if there is a balance between the two. In terms of the landscape defined in Fig. 1, the 
combined radii of the peaks is 7, while the neutral space between them is 3. It is therefore expected that the effect of 
increasing peak radius will outweigh the effect of increasing peak distance; CMR is expected to increase as S increases.

In addition to mutation, individuals can move around the fitness landscape by way of recombination events that 
involve a reciprocal exchange of genetic material (known as crossover). Recombination has been seen to lower the 
mutation rate at which the error threshold occurs in viruses21. Similarly, Ochoa et al. observed that recombination 
can push the population in a genetic algorithm over the error threshold when the mutation rate is high (such as when 
it is close to the CMR)22. We therefore hypothesise that increasing the number of crossover events that occur during 
reproduction will increase the magnitude of the CMR. Similarly, increasing the number of chromosomes the genome is 
split into is also expected to affect the magnitude of the CMR; in the model there is a crossover event per chromosome 
therefore an increase in chromosome number will result in an increase in the number of crossovers per reproduction. 
We hypothesise that increasing the number of genes in the simulation (while keeping gene length constant) will lower 
the CMR as it will increase the overall sequence length. Gene numbers within biological ranges (i.e., 25,000 genes to 
model A. thaliana) are expected to lead to CMRs close to the range of wild-type mutation rates; it is expected biological 
organisms will be evolving close to the mutation rate that results in the fastest rate of adaptation.

Key Definitions.  Critical mutation rate (CMR).  The mutation rate at which 95% of runs lead to all individ-
uals in the population losing the fitter, narrower peak in a two-peak landscape within 10,000 generations. It is the 
mutation rate at which there is a transition from survival-of-the-fittest to survival-of-the-flattest.

Crossover.  Recombination event that involves a reciprocal exchange of genetic material.

Effective population size.  The number of individuals in a population that contribute offspring to the next 
generation.

Error threshold.  The mutation rate above which the population loses all of the peaks in the landscape (known 
as error catastrophe).

Fitness score.  The value assigned to an individual according to their position in the fitness landscape.

Hamming distance.  The number of bases different between two sequences.

Neutral mutation.  A mutation that has no effect on fitness.

Peak radius.  The Hamming distance between the top of the peak and the point of zero fitness. The greater the 
radius, the broader the peak.

Robustness.  The average effect of a specific type of perturbation (such as a de novo mutation) on the fitness of a 
specific genotype. The smaller the change in fitness, the more robust the genotype is to mutation.

Survival-of-the-flattest.  When individuals with greater robustness to mutation are favoured over individuals 
with greater fitness.

Results
The exponential relationship between population size and CMR previously reported9 is observed when param-
eters for the simulation model are set to values within biologically-relevant ranges. The CMR decreased with 
population size for a range of sequence lengths, peak radii and distance between peaks, crossover events per 
reproduction, chromosome numbers (with a crossover event per chromosome), and the total number of genes an 
individual is made up of. The magnitude of the CMR was influenced most by the length of the sequence and the 
number of genes. When the length and the number of genes was set to 2,000 bp and 25,000 respectively, which are 
values relevant to the plant A. thaliana, the CMR was recorded to be within one order of magnitude higher than 
the wild-type mutation rate listed for A. thaliana in Table 1.
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Increasing the sequence length leads to a decrease in CMR.  Figure 2 shows the CMR for sequence 
lengths of 30 up to 150,000 bp; increasing sequence length decreases the CMR in a single-gene-per-individual 
diploid in silico evolving system. Increasing the sequence length from 30 up to 150,000 bp lead to the CMR falling 
by close to four orders of magnitude. Peak 0 and peak 1 were given an initial radius of 2 and 5 respectively, while 
the distance between the top of the peaks was set to 10 (as per Aston et al.9). The exponential relationship between 
CMR and population size presented previously is maintained irrespective of sequence length. Two-way ANOVA 
indicates that, for increasing sequence lengths, the CMR will decrease with population size in line with the expo-
nential model identified in Aston et al.9 (p < 0.0001, α = 0.05, F(8,176) = 453.09 for the null hypothesis that there 
will be no decrease in CMR with population size for increasing sequence lengths)(see Supplementary Table 1). It 
should be noted that results relating to the relationship between population size and sequence lengths 2,000 and 
20,000 (shown as part of Fig. 2) were presented at the Artificial Life 2016 conference23.

Scaling the radius of the peaks and the Hamming distance between them affects the magni-
tude of the CMR.  Figure 3 shows that when the radius of peak 0, peak 1, and the distance between them, 
is scaled by parameter S, increasing S leads to an increase in the CMR. Peak 0 and 1 were given an initial radius 
of 2 and 5 respectively, while the distance between their peaks was set to 10 (as per previous experiments). 
Parameter S was increased from 1 to 10 (making the minimum distance 10 and the maximum distance 100; this 
covers the range given in Table 2). The CMR curves flatten out initially at 0.00028, increasing to 0.00087 when S 
reaches 10. The exponential relationship between population size and CMR was maintained irrespective of peak 
width and distance. Two-way ANOVA indicates that the CMR will increase as S increases (p < 0.0001, α = 0.05, 
F(9,198) = 89.07 for the null hypothesis that there will be no increase in CMR with S) (see Supplementary 
Table 2). Keeping the radius of peak 0 constant at 2, while increasing the radius of peak 1 from 4 up to 5, then 
up to 6 (not allowing the peaks to meet or overlap), produced results with no statistical significance (p = 0.12, 
α = 0.05, F(2,44) = 2.19).

Increasing the number of crossovers per reproduction or the number of chromosomes per genome 
leads to an increase in CMR.  The previous results, and those of Aston et al.9, used a simulation model in which 
every sequence underwent a single crossover per reproduction. Increasing the number of crossovers per reproduction 
from 1 up to 5 lead to an increase in CMR, with the largest increase occurring when crossover was increased from 1 
per reproduction to 2. (Fig. 4(a)). Each gene was also split into up to 10 chromosomes, with 1 recombination event per 
chromosome. Increasing the number of chromosomes from 1 up to 10 lead to an increase in CMR within the same 
order of magnitude (Fig. 4(b)). The exponential relationship between CMR and population size was maintained for 
any number of crossovers or chromosomes. Two-way ANOVA indicates that the magnitude of the CMR will increase 
with either the number of crossover events (p < 0.0001, α = 0.05, F(4,88) = 342.30), or the number of chromosomes 
(p < 0.0001, α = 0.05, F(3,66) = 464.10) for the null hypothesis that there will be no increase in CMR with either the 
number of crossover events or chromosomes respectively (see Supplementary Tables 3 and 4).

Increasing the number of genes produces CMRs similar to biological mutation rates.  As increas-
ing sequence length has been seen to decrease CMR (Fig. 2), increasing the number of genes was also expected to 
decrease CMR. As per previous experiments, the simulation model was run with a minimal yet biologically real-
istic gene length of 1,000. However, the number of genes was then doubled from n = 1 up to n = 8,192. The CMR 

Figure 2.  CMR when the simulation model was run for one gene with sequence lengths of 30 up to 150,000 bp 
(shown in the legend) for population sizes 10 up to 1,000. Peak 0 had a radius of 2 and peak 1 a radius of 5. The 
Hamming distance between the peaks was 10. The exponential lines were obtained by curve-fitting using R with 
a least squares method. Error bars are not plotted, but are small, for instance . × −9 37 10 03 ( . × −9 317 10 03–
. × −9 423 10 03, 95% confidence interval) and . × −1 84 10 06 ( . × −1 834 10 06– . × −1 846 10 06, 95% confidence 

interval) for uppermost (30 bp) and lowest (150,000 bp) points (population size 900) respectively.
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was recorded as the mutation rate at which any of the possible n genes was lost in 95% of runs within 10,000 gen-
erations. Figure 5 shows the CMR decreases by up to three orders of magnitude as gene number increases from 
1 to 8,192, bringing the CMR to within an order of magnitude of the biological mutation rates listed in Table 1. 
Curve-fitting using R showed the results follow quadratic curves; these can be seen to become closer as popula-
tion size is increased, indicating the decrease in the rate of change of CMR with increasing population size seen 
previously (e.g., Fig. 2). Two-way ANOVA indicates that increasing the number of genes in the simulation (while 
keeping gene length constant) will lower the CMR (p < 0.0001, α = 0.05, F(13, 91) = 31.62 for the null hypothesis 
that there will be no decrease in CMR with an increase in the number of genes) (see Supplementary Table 5).

Population size 10 was also run with 25,000 genes of length 1,000 or 2,000 bp to bring the gene number to within 
the correct range for the plant A. thaliana24,25. Increasing the gene number decreased the CMR further to within an 
order of magnitude of the per base per generation mutation rate for A. thaliana which is given as 7.1 × 10−9 (Table 1). 
Figure 5 shows per base mutation rate estimates for A. thaliana, C. elegans (nematode worm), D. melanogaster (fruit 
fly), and humans taken from Table 1, each of which are within an order of magnitude of the simulation results for 
25,000 genes for population size 10. It should be noted that results relating to the relationship between population 
size and the number of genes (shown in Fig. 5) were presented at the Artificial Life 2016 conference23.

Discussion
We previously showed that population size influences the CMR that populations can tolerate before fitter individuals 
are outcompeted by those that have a greater mutational robustness in artificial haploid and diploid populations with 

Figure 3.  CMR plotted against population size for varying values of scale parameter S. Population size was 
varied from 10 up to 1,000 and each individual consisted of 1 gene of 1,000 bp in length. Peak 0 and 1 were given 
a radius of 2 and 5 respectively, while the distance between their peaks was set to 10. (a) CMR plotted for 
population sizes 10 up to 1,000. The radius of the peaks was initially set to 2 and 5 for peak 0 and 1 respectively, 
with the distance between the top of the peaks set to 10. These values were then scaled by parameter S (shown in 
the legend). The exponential lines were obtained by curve-fitting using R with a least squares method. Error bars 
are not plotted, but are small, for instance . × −8 66 10 04 ( . × −8 621 10 04– . × −8 699 10 04, 95% confidence 
interval) and . × −2 75 10 04 ( . × −2 740 10 04– . × −2 760 10 04, 95% confidence interval) for uppermost (S = 10) 
and lowest (S = 1) points (population size 900) respectively. (b) CMR plotted for varying values of S when 
population size is 1,000.
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Distance between alleles Unit Gene Source

2.02 % difference Adh1-1F and Adh1-1S alleles in maize 59

1 Amino acid Rice blast resistance (R) gene Pi-ta 60

13 Single nucleotide polymorphisms (SNPs) Pikh allele for rice varieties 62

7

7

19

45

48

54

19

56

47

19 Base pairs Adh1 alleles of wild barley 63

0, 1, 1 Synonymous, non-synonymous, non-coding SNPs HMGCR 35

3, 2, 1 HSD3B1

1, 0, 0 HTR1EL

2, 3, 9 HTR2A

0, 1, 0 HTR2C

2, 0, 0 HTR5A

1, 0, 0 HTR6

0, 0, 0 HTR7

0, 0, 8 IGF1

0, 0, 1 IGF2

4, 3, 0 ITGA2B

4, 3, 0 ITGB3

0, 1, 2 KLK2

3, 0, 0 LCAT

7, 3, 0 LDLR

4, 3, 4 LIPC

1, 1, 0 LPL

1, 0, 0 MAOA

1, 0, 0 MAOB

1, 2, 1 MPL

1, 1, 5 NGFB

1, 0, 0 NT3

5, 2, 0 NTRK1

2, 0, 4 PACE

1, 2, 1 PAI1

5, 4, 5 PAI2

1, 3, 1 PC1

5, 5, 4 PCI

0, 0, 0 POMC

1, 1, 1 PRL

3, 0, 0 PROC

1, 0, 0 PROS1

0, 2, 0 PTAFR

1, 0, 2 PTH

0, 0, 13 PTHLH

5, 8, 0 SELP

1, 3, 1 SHBG

Table 2.  Genetic distances between alleles for various genes. The data from Cargill et al.35 represents 
polymorphisms in alleles for a subset of human genes (cross-section displayed below). Where there is more than 
one distance listed per source, the Unit and Source columns are left blank. Where there is multiple data for one 
gene, the Gene column is also left blank.
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a small number of individuals9, a result which we demonstrate here to have relevance beyond artificial systems. The 
mutation rates in Table 1 are up to 10 orders of magnitude lower than the CMR reported in Aston et al.9. Increasing 
the sequence length lowered the CMR while maintaining the exponential dependence on population size (Fig. 2); 
increasing the sequence length by a factor of 10 decreases the CMR by a factor of 10. The relationship between 
sequence length and CMR is comparable to the relationship between sequence length and error threshold already 
reported16–18; consistency with the existing results for error threshold increases confidence in our novel results for 
the CMR. The Hamming distance between the two peaks determines the size of the neutral space between them in 
which individuals can mutate without loss or gain in fitness. Conversely, increasing the radius of the peaks decreases 
the neutral space. Scaling up both the distance and radius by parameter S lead to an increase in the CMR (Fig. 3). 
When S = 1, the peaks and space between them take up 2.4% of the genome. When S = 2, this doubles so that the 
peaks and space between them take up 4.8%. When S = 1, the peaks alone take up 1.4% of the genome versus 2.8% 
when S = 2; the neutral space decreases by 1.4% when the peak radii are doubled from 1 to 2. Decrease in neutral 

Figure 4.  (a) CMR plotted for varying number of crossovers. The number of crossover events per reproduction 
is given in the legend. The exponential lines were obtained by curve-fitting using R with a least squares method. 
Error bars are not plotted, but are small, for instance . × −3 91 10 03 ( . × −3 866 10 03– . × −3 954 10 03, 95% 
confidence interval) and . × −2 75 10 04 ( . × −2 740 10 04– . × −2 760 10 04, 95% confidence interval) for uppermost 
(5 crossovers) and lowest (1 crossover) points (population size 900) respectively. (b) CMR plotted for varying 
number of chromosomes. The number of chromosomes each gene was split into is given in the legend. The 
exponential lines were obtained by curve-fitting using R with a least squares method. Error bars are not plotted, 
but are small, for instance . × −4 73 10 03 ( . × −4 703 10 03– . × −4 757 10 03, 95% confidence interval) and 
. × −2 75 10 04 ( . × −2 740 10 04– . × −2 760 10 04, 95% confidence interval) for uppermost (10 chromosomes) and 

lowest (1 chromosome) points (population size 900) respectively. Population size was varied from 10 up to 1,000 
and each individual consisted of 1 gene of 1,000 bp in length. Peak 0 had a radius of 2 and peak 1 a radius of 5. 
The Hamming distance between the peaks was 10. The number of crossovers per reproduction was increased 
from 1 (as per previous experiments) to 5, as per the legend in (a). The number of chromosomes per gene (given 
in the legend) was increased from 1 (as per previous experiments) to 10, as per the legend in (b).
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space means there is more chance of a mutation being non-neutral; mutation rate is expected to be minimised to a 
greater extent when there is a greater chance of a mutation affecting fitness. Increase in S also means an increase in 
the mutational robustness of peak 1. CMR increases with S therefore the increase in robustness of peak 1 to muta-
tion exceeds the effect of the increase in non-neutral space. In addition to mutation, individuals move around the 
landscape by way of crossover. In biological species, the number of crossovers per chromosome and per meiosis is 
tightly controlled26. At mutation rates close to the CMR, recombination acts to pull the few remaining individuals off 
peak 0 towards the rest of the population on peak 1, leading to survival-of-the-flattest at a lower mutation rate than 
if recombination was not present. Increasing the number of crossovers from 1 to 5 increased the CMR at population 
size 1,000 from 0.00028 to 0.0037, with an increase in CMR of one order of magnitude when crossover was increased 
from 1 to 2 (Fig. 4(a)). Increasing the number of chromosomes affected the number of crossover events per repro-
duction and therefore also lead to an increase in CMR (Fig. 4(b)).

While it is clear that increasing the sequence length decreases the CMR more so than varying the muta-
tional robustness (peak radii), the number of bases different between alleles (distance between the peaks), or the 
number of recombination events (both through directly increasing the number of crossovers per reproduction, 
or indirectly by increasing the number of chromosomes), the CMR remained between two and four orders of 
magnitude higher than existing estimates of wild-type biological mutation rate (Table 1). Increasing the number 
of genes to within a biologically-relevant range was expected to lead to CMRs close to the range of wild-type 
mutation rates in Table 1. Consistent with this, when gene length is kept constant, doubling the number of genes 
leads to a reduction in the CMR at which 95% of runs lose peak 0 for at least one gene (Fig. 5). The magnitude of 
this reduction is variable, but occurs across all population sizes shown in Fig. 5. In biological organisms, there is 
a lower limit on mutation rate as defined by the drift-barrier hypothesis19; it is expected biological mutation rates 
will exist somewhere between this lower limit and the CMR. Figure 5 shows a drop in CMR in the order of three 
magnitudes as gene number increases from 1 to 8,192. This brings the CMR to within an order of magnitude of 
the estimates of wild-type biological mutation rates listed in Table 1. For example, population size 10 was run 
with 25,000 genes of length 1,000 or 2,000 bp to bring the gene number and length to within the correct range 
for A. thaliana. This decreased the CMR further to within an order of magnitude of the per base per generation 
mutation rate for A. thaliana given in Table 1. Figure 5 also shows per base mutation rate estimates for C. elegans 
(nematode worm), D. melanogaster (fruit fly), and humans taken from Table 1, all of which are also within an 
order of magnitude of the simulation results for 25,000 genes. The mutation rates for A. thaliana and C. elegans are 
at or below the predicted CMR while D. melanogaster is slightly higher but likely to be below the predicted CMR 
for a population size greater than 10 based on the trend in Fig. 5. It is notable that the genome size estimates for 
multicellular eukaryotes used in Fig. 5 are based on numbers of protein coding genes. Protein coding sequences 
account for a relatively small proportion of the total genome length in such organisms (1.2% in humans27), but 
much more of the sequence is functional at some level, probably at least 9%28, with estimates of up to 80% in 
humans27,29, (albeit this last figure is likely to be a substantial over-estimate30). This means that the genome size at 

Figure 5.  CMR plotted alongside gene number for varying population sizes. Data are shown for population 
sizes 10 to 80 with results plotted on a log log scale. Peak 0 had a radius of 2 and peak 1 a radius of 5. The 
Hamming distance between the peaks was 10. Gene length was kept constant at 1,000, while gene number was 
doubled from 1 up to 8,192. The corresponding quadratic lines were obtained by curve-fitting using R. Error 
bars are not plotted, but are small, for instance . × −5 26 10 08 ( . × −4 100 10 08– . × −6 400 10 08, 95% confidence 
interval) and . × −1 25 10 07 ( . × −1 000 10 07– . × −1 500 10 07, 95% confidence interval) for uppermost (population 
size 80) and lowest (population size 10) points (gene number 8192) respectively. A line representing 1/L, where 
L is gene length, is plotted for reference. Population sizes shown represent the steep part of the curve in Fig. 2 
before it levels out. Population size 10 was also run with 25,000 genes, the correct range for the plant A. thaliana. 
Gene length was set to 1,000 bp to match the other runs or 2,000 bp to bring it closer to A. thaliana’s gene length. 
For reference, the range of per base mutation rates from Table 1 is shown for A. thaliana, Caenorhabditis elegans 
(nematode worm), Drosophila melanogaster (fruit fly), and humans (with gene number estimates from24,64,65 
and27 respectively).
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which these biological mutation rates are plotted in Fig. 5 is a minimal estimate, the true value being substantially, 
perhaps an order of magnitude, higher, therefore putting their observed mutation rates closer to the CMRs esti-
mated by simulation. This is an important contribution; it is the first time the simulation model has been assigned 
input and produced output within range for a given biological organism.

Bringing the CMR into the biological range is an important step in the development of an in silico simulation 
to directly model the evolution of biological species existing in small populations. Future work will build on this, 
with the potential to further study the effect on CMR using parameter values for the model organism A. thaliana, 
for example, incorporating its five chromosomes into the simulation model. There is also potential to both develop 
and test the applicability of the model to a more diverse range of biological species. Specifically, the simulation 
model has been developed to begin to incorporate features to allow it to be applied to prokaryotic as well as eukar-
yotic species through the introduction of lateral gene transfer31; the transfer of genetic material via lateral gene 
transfer or transposable elements will further influence the population’s movement in sequence space. There is also 
potential to use a developed version of the simulation model to simulate evolution of bacteria in an environment in 
which there is antibiotic present; resistance alleles may be represented by the two-peaks where each peak is mod-
elled on known evolution of antibiotic resistance. In conjunction with wet lab experiments, this has the potential 
to enable the model to simulate and ascertain in silico the efficacy of combined antibiotic administration on the 
evolution of antibiotic resistance. In eukaryotes, prediction of the CMR for populations of varying sizes will enable 
identification of the optimum mutation rate, a crucial parameter in the evolution of small populations where CMR 
is known to vary significantly; this has the potential to influence understanding of populations undergoing a bot-
tleneck, under stress, and subsequent conservation strategy for populations on the brink of extinction.

Methods
Model development.  The models defined in Aston et al.9 used arbitrary values for parameters selected for 
their suitability to provide results within a small time frame. Derelle et al.32, Sharma et al.33, and Lewin34 list the 
length of genes for various biological organisms at between approximately 1,000 to 140,000 bp; the sequence 
length of 30 used to produce the results in Aston et al.9 is small when compared with the length of genes found in 
a wide range of species. Unless stated otherwise, 1,000 bp was selected to be a suitable sequence length for study 
as it is biologically realistic yet small enough to minimise runtime. If each peak in the two-peak landscape (Fig. 1) 
is considered to represent a set of alleles (variants of a gene), i.e., peak 0 is one set of alleles, peak 1 is another set 
of alleles of the same gene, estimates of genetic distance between alleles for various genes can be seen to be analo-
gous to the distance between the peaks. Distance between the peaks can therefore be considered to fall within the 
range of 1 and 56 polymorphisms (Table 2). Similarly, the number of polymorphisms was estimated to be at most 
13 (including non-coding regions) within human genes studied by Cargill et al.35, a subset of which are given in 
Table 2. In terms of the simulation model, there is no part of the fitness landscape in which individuals cannot 
be chosen to reproduce. In a model which allowed individuals that lose the peaks to ‘die’, non-lethal neutral 
parts of the landscape would be represented by plateaus on the peaks; in the simulation model the neutral space 
is considered to be any part of the landscape apart from the peaks. To test the effect of scaling both the distance 
between peaks and the radius of the peaks by a given parameter S, peak 0 and peak 1 were given an initial radius 
of 2 and 5 respectively, while the distance between the top of the peaks was set to 10. S was set to equal 1 up to 10 
and multiplied by the radii and distance. The resulting distances covered the range defined by Table 2. To test the 
effect of recombination, the number of crossovers per reproduction was increased from 1 up to 5. This was kept 
constant for the duration of each set of runs; there is variation in the rate of crossover within biological species 
(for example, Table 3 (Table 1 in26), but to ascertain the effect of varying the number of crossovers per reproduc-
tion it was necessary to keep the number constant. Allowing variation within runs would have also increased the 
number of required run repetitions in order to counteract the increase in noise. The genome was split into up to 
10 chromosomes, with 1 recombination event per chromosome. To test the effect of increasing gene number, the 
gene length was kept at 1,000 bp, but gene number was increased from 1, doubling each time up to 8,192. Gene 
number experiments were done for population sizes of 10 up to 80, i.e., those representing the exponential phase 
of the data in Fig. 2 before it plateaus. This subset of population sizes was chosen to minimise runtime.

Based on the information in Table 1 and the value of 2,232 bp mean gene size (minus introns) given by Derelle 
et al.32, A. thaliana (thale cress) was selected as a target model organism; it has a relatively short gene length which 
makes it an ideal candidate for in silico simulation with minimised runtime. It is a plant native to Eurasia, with an 

Female Male Ratio Male/Female

Number of COs analysed 5003 8532

Size genetic map (cM) 332 575

COs per cell 6.65 11.15 1.67

COs per chromosome 1 bivalent 1.63 2.85 1.75

COs per chromosome 1 bivalent corrected* 1.63 3.18 1.95

COs per chromosome 2 bivalent 1.19 1.89 1.58

COs per chromosome 3 bivalent 1.29 2.14 1.66

COs per chromosome 4 bivalent 1.10 1.71 1.56

COs per chromosome 5 bivalent 1.44 2.58 1.79

Table 3.  Crossover rates in A. thaliana taken from Table 1 in Giraut et al.26. *Values given for male bivalent with 
and without correction for segregation bias (see Giraut et al.26).
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effective population size of between 250,000 to 300,000 36, known to contain 25,498 genes encoding proteins from 
11,000 families24. More current estimates of gene number are slightly higher but still within a close range for the 
purpose of the model25. A. thaliana is a hermaphroditic plant in which male and female crossover occurs within 
the same plant cells26. Chromosomes, of which there are five, recombine 1.7 times more in male meiosis when 
compared with female meiosis, with male crossover rates remaining very high at both ends of each chromosome 
while female rates are very low. Analysed crossover rates in A. thaliana are as listed in Table 3 which was taken 
from Table 1 in Giraut et al.26. The simulation was run for population size 10 with a gene length of 1,000 bp (as 
per the previous runs) or 2,000 bp (range of A. thaliana), but with 25,000 genes to bring the gene number into the 
range of A. thaliana. Population size 10 was chosen to minimise runtime.

Simulation model.  The simulation model used a two-peak fitness landscape (Fig. 1), with the height of peak 
0 constant at 15 and the radius 2, the height of peak 1 constant at 10 and the radius 5, and the Hamming distance 
between the peaks set at 10 as per Aston et al.9 (unless stated otherwise). Fitness was defined as a relative score 
therefore the choice of peak height was not important; peak 0 was set to have a maximum fitness score greater 
than that of peak 1. Each individual consisted of one randomly assigned maternal and one paternal sequence of 
alphabet size 4, and each sequence was split into n genes of length L. Each gene had an associated target sequence 
of length L corresponding to peak 0 and a target sequence corresponding to peak 1. For example, if n is set to 4, 
there will be target sequences corresponding to peaks 0111, 0212, 0313, and 0414. For simplicity, each peak 0 was 
set to be all 0 s and each peak 1 was randomly generated to be Hamming distance 10 away. The simulation was 
initialised so that half of the population was on the top of peak 0 and half on the top of peak 1. Recombination was 
limited to one event per replication unless otherwise stated.

Mutation was done according to a given probability of per base mutation. A random number K was generated 
from a binomial distribution of L trials (where L is the length of the sequence) with M probability of mutation. K 
positions in the sequence were then sampled and mutated to a different base. There was an equal chance of muta-
tion to any of the other three possible values. For each individual, the fitness of each of its n genes was calculated 
as the Hamming distance of the maternal and paternal sequences relative to each peak. The maternal fitness value 
relative to peak 0 was compared with the maternal fitness value relative to peak 1 and the highest of these selected 
to give a single maternal fitness value. This was repeated for the paternal sequence. The resulting maternal and 
paternal fitnesses were compared and subsequently designated as fmax and fmin. The final relative fitness of each 
gene was calculated as λ λ= × + − ×f f f( ) ((1 ) )max min , where λ is the dominance parameter which deter-
mines the relative contribution of the maternal and paternal sequences to the overall fitness of the individual. 
Rather than select one to be completely dominant over the other (i.e., λ = 1.0), λ was set to equal a fraction below 
1.0 (0.999999999999999 specifically). If λ = 1.0, the fitness of only one allele is taken into account, while the other 
can be anywhere in the fitness landscape drifting neutrally; setting λ to just below 1.0 ensures both the maternal 
and paternal alleles contribute to the fitness of the individual. When each individual had more than one gene, the 
overall fitness of the individual was taken to equal the minimum fitness out of the n genes present. In biological 
species, there is complex interaction between genes (epistasis)37. The minimum fitness was selected as the overall 
individual fitness as a realistic form of epistasis that avoids the situation in which one gene on top of the highest 
peak could mask the loss of the peaks by multiple other genes in the simulation. It is also representative of the fact 
that, in biological species, a large proportion of genes is classed as essential; that is, gene deletion results in lethal-
ity or infertility in a particular environment38–41. During the replication step, three individuals were selected at 
random, with two being designated parents and one to be replaced with the resulting child. The individual to be 
replaced was determined based on the fitnesses of the three individuals: there was an equally small chance of 
either of the two fittest of the three being replaced (25%), and a 50% chance of replacing the least fit. This ratio 
ensures that there is potential for any individual to be chosen for replacement, allowing loss of the fittest peak. 
This step was repeated until each individual in the population had been chosen exactly once to undergo reproduc-
tion (or there were less than three remaining to select); this represents one discrete generation. Such 
non-overlapping generations exist in nature, and that discreteness matters for population dynamics42. For exam-
ple, periodic insects, such as 13-year cicadas, have non-overlapping generations43 as do some salmon and many 
annual plants, both wild and agricultural. Non-overlapping generations are also widely used laboratory tests of 
biological evolution, using model species such as C. elegans (e.g.44,) and D. melanogaster (e.g.45). Our simulation 
was run for a range of population sizes to confirm the curves observed in previous experiments8,9, was observed 
as the length and number of genes was increased.

To allow the simulation to complete within a realistic time frame, it was optimised to cease running when any 
one gene had lost peak 0; this was all the information required to determine the CMR, which was recorded as the 
mutation rate at which 95% of 2,000 runs lost peak 0 within 10,000 generations for any of the possible n genes. 
This means that a population of individuals with a single gene and a population of individuals with 1,000 genes 
will both cease running when peak 0 is lost for a single gene. The CMR was calculated for each 100 runs to pro-
duce 20 CMR values from which the mean was calculated, along with the standard deviation and the 95% confi-
dence interval. Each set of expected CMR values for each variable being tested was analysed by two-way ANOVA, 
with main effects of population size and the variable of interest (e.g., sequence length) treated as independent 
factors. Launching the simulation for various combinations of parameter values was also optimised to allow the 
mutation rate being tested for a given gene number to progress to the next mutation rate once 100 out of the pos-
sible 2,000 runs (corresponding to 5%) have kept peak 0 for the duration of the simulation. Once this threshold 
has been exceeded, less than 95% of the 2,000 runs will have lost peak 0, and the CMR will not have been reached. 
Runs started with a very low per base mutation rate ( × −1 10 8). The first digit was then incremented up to the 
next order of magnitude (i.e., × −2 10 8, × −3 10 8, etc. up to × −1 10 7). This was repeated up to a mutation rate of 

× −1 10 2. This enabled identification of the order of magnitude of the CMR. Mutation rates within the appropri-



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 15519  | DOI:10.1038/s41598-017-14628-x

ate order of magnitude for each set of parameter values were then incremented by . × −0 1 10 n, i.e., . × −1 1 10 n, 
. × −1 2 10 n, . × −1 3 10 n, etc. to pinpoint the CMR. While this helped significantly with runtime, further optimi-

sation will be required in the future; it is currently not feasible to run the simulation for a wide range of popula-
tion sizes and mutation rates for gene numbers at the upper end of the biological range.

Data Availability.  Datasets generated and analysed are openly available at https://doi.org/10.5281/
zenodo.837869. The source code for the simulation model is openly available at http://doi.org/10.5281/
zenodo.581389.
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