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Abstract

Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with
various stressors (stress-induced mutagenesis—SIM) and decrease at high final population density (density-associated
mutation-rate plasticity—DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing
effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We
distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and
Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of
DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 x 108 cells ml ™).
These findings demonstrate a strikingly close and nuanced relationship of ecological factors—stress and population density

—with mutation, the fuel of all evolution.

Introduction

How and why the rate of spontaneous genetic mutation
varies is a fundamental and enduring biological issue [1].
Mutation rate can vary both among species [2] and within a
genotype [3]. Intra-genotypic variation can depend upon
stressful environmental conditions, such as nutrient limita-
tion, growth-rate reduction, high osmotic pressure, low pH,
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extreme shifts in temperature or various DNA-damaging
agents [4]. In these environments, double-stranded breaks
can induce stress responses that in turn increase mutation
rates via DNA polymerases with different error rates [S]—a
phenomenon known as stress-induced mutagenesis (SIM).

Recently, we found that, across microbes, the mutation
rate of a particular genotype is closely associated with the
final density to which the population grows (D, i.e. the
carrying capacity of the environment divided by its volume)
[6]. In this so-called density-associated mutation-rate plas-
ticity (DAMP), bacterial and yeast populations show a
power law (log—log linear) reduction in mutation rate with
D when grown in a defined minimal medium with glucose
as the sole carbon source [6, 7]. DAMP and SIM modify
mutation rates in Escherichia coli via different genetic
pathways. DAMP requires a Nudix hydrolase protein,
whose primary role is degrading highly mutagenic 8-oxo-
dGTP [8], while error-prone polymerase Pol IV is not
involved in DAMP [6]. Differences in the underlying
mechanism and the fact that the densest populations,
experiencing the highest stress, show the lowest mutation
rates, suggest that DAMP is not obviously associated with
stress.

Growth in minimal medium on a single carbon source
does not, however, reflect the environmental complexity or
range of population densities experienced by many species.
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E. coli population density in host environments varies over
five orders of magnitude among host species, and can be
higher than 10° colony-forming units per gram of faeces
(reviewed in ref. [9]). As the highest population densities,
with the greatest competition, rely on high nutrient avail-
ability, we reasoned that the addition of nutrients to minimal
nutrient environments could indirectly increase both popu-
lation densities and the level of stress. We therefore hypo-
thesised that the effects of density and stress on mutation
rates, DAMP and SIM respectively, will act in opposition to
one another across such a nutrient gradient—DAMP
decreasing mutation rate and SIM increasing it as nutrients
and final population density increase.

Here we test this hypothesis by determining E. coli
mutation rates across a nutrient gradient, while genetically
manipulating DAMP and SIM independently. As hypothe-
sised, we identify genetically separable and opposed asso-
ciations of mutation rate with nutrient availability—a
negative association requiring mutT (DAMP) and a positive
association requiring polymerases IV and V (dinB and
umuC, respectively; SIM). We find that these associations
combine to minimise average mutation rates in environ-
ments with intermediate nutrient availability and final
population density (Fig. 1b).

Results

We assayed mutation rates to rifampicin resistance using
fluctuation tests in E. coli K-12 MG1655 grown across a
gradient of nutrient availability: a range of concentrations
(1-90% vol/vol) of lysogeny broth (LB) mixed with Davis
minimal (DM) medium (LB/DM). We find that the rela-
tionship of mutation rate to LB concentration is non-linear
(Fig. 1a, likelihood ratio test of a quadratic effect of log
nutrient availability on log mutation rate: N =97, LRg; =
105, P=1.2x10"%* model S-I in Supplementary Infor-
mation). Repeating this experiment using a different marker
of mutation (nalidixic acid resistance) gives a similar non-
linear relationship (Fig. S1). Mutation rate to both rifam-
picin and nalidixic acid resistance decreases as LB/DM is
increased from 1 to 10% LB (increasing final population
density, D, from 4.5x 107 to 1x 10 cells ml~!, Figs. S2—
S5). This is comparable to DAMP in DM with glucose [6,
7]. However, mutation rate increases again in richer media,
with 90% LB reaching similar or higher mutation rates than
in 1% LB.

We next asked whether the increase in mutation rate at
higher nutrient availability is genetically separable from the
decrease in mutation rate due to DAMP. DAMP in E. coli
requires the 8-oxo-dGTP diphosphatase MutT protein,
meaning that, in minimal medium with glucose, the muta-
tion rate in a AmutT mutant does not decrease with
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Fig. 1 Effect of nutrient availability on mutation rate a) to rifampicin
resistance in wild-type E. coli K-12 MG1655 (N=97). Cells were
grown in Davis minimal medium mixed with 1-90% of lysogeny broth
(LB) medium. Colours represent final population density measured by
colony-forming units (see Fig. S2 for details). See Figure S4 for a plot
of mutation rate directly against final population density (measured by
ATP-based assay) and S10 for mutation rates co-estimated with the
relative fitness of resistant mutants and model S-I in Supplementary
Information for analysis. Note the nonlinear axes. b Schematic of the
mechanisms involved in mutation-rate plasticity (density-associated
mutation-rate plasticity, DAMP, and stress-induced mutagenesis,
SIM). At low nutrient availabilities, DAMP is present and SIM is
absent. At higher nutrient availabilities, SIM becomes dominant.
Solid lines correspond to the mutation-rate plasticity measured in
a. Genetically removing one or the other mechanism (Figs. 2 and 3)
reveals mutation-rate plasticity indicated by the dotted lines

increased nutrient concentration [6]. We therefore per-
formed fluctuation tests to nalidixic acid resistance in LB/
DM with a AmutT mutant. We find that in LB/DM, as in
DM with glucose, mutation rate in AmutT shows no rela-
tionship with increased nutrients or final population density
below 10% LB (Fig. 2). However, even more clearly than in
the wild types (both MG1655 (Fig. 1a) and the immediate
parent of the AmutT mutant (Fig. S7)), mutation rate of the
AmutT mutant increases with the nutrient availability above
10% LB (final population density of ~1x 10° cells ml~1).
The only other E. coli mutant reported not to exhibit DAMP
is E. coli K-12 MG1655 AluxS [7]. However, the deficiency
in DAMP of this mutant is functionally complemented by
added aspartate [7], and LB is a medium rich in amino acids
[10]. If variation in mutation rate at 10% LB/DM and below
is the same phenomenon as DAMP, we expect this mutant
strain to behave more similarly to a wild-type than the
AmutT mutant. We find that the AluxS mutant’s mutation
rate is indistinguishable from the wild-type MG1655 across
LB/DM environments (Fig. S7, N= 167, likelihood ratio
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Fig. 2 Effect of nutrient availability on mutation rate to nalidixic acid
resistance in cells without DAMP (AmutT, N = 30). Cells were grown
in Davis minimal medium mixed with 1-90% of lysogeny broth (LB)
medium. Colours represent the final population density measured by
colony-forming units (see Fig. S2 for details). See Fig. S6 for a plot of
mutation rate directly against final population density and S11 for
mutation rates co-estimated with the relative fitness of resistant
mutants. Nalidixic acid resistance is used as the marker here rather
than rifampicin resistance (as in Fig. 1) because the mutation rate of
this AmutT strain is too high to assay with rifampicin (for which at
least 69 different resistance mutations are known [13], the ‘target size’
for nalidixic acid resistance is much smaller). Directly comparable data
for wild-type MG1655 mutation rate to nalidixic acid resistance are
shown in Fig. S1. Note the nonlinear axes

tests of the /uxS deletion on the interaction between the
quadratic response of mutation rate to LB concentration and
genotype [N =167, LR, 1, =2, P =0.16], and on the fixed
effect of genotype [N =167, LR 0= 1.4, P =0.24]).

The fact that mutation rate increases at high LB con-
centrations in a AmutT mutant (Fig. 2), where DAMP is
absent, suggests that high LB concentrations increase the
mutation rate via a DAMP-independent mechanism. We
hypothesised that higher LB concentrations increase the
level of stress (e.g. by promoting competition), thereby
causing error-prone polymerases Pol IV and Pol V (coded
by dinB and umuCD, respectively) to increase the mutation
rate at very high LB concentrations. We tested this
hypothesis by estimating mutation rates to rifampicin
resistance in E. coli AdinB and AumuC mutants growing in
LB/DM. We find that, unlike E. coli MG1655 (Fig. 1a) and
AmutT (Fig. 2), mutation rates of the AdinB and AumuC
deletants (Fig. 3, Model S-III in Supplementary Informa-
tion) decrease with increasing nutrients above 10% LB
(above final population densities of 7 x 10%cellsml™',
Fig. S8). This continued decrease indicates that these
polymerases are required for the rise in mutation rates as
nutrients increase, and that DAMP continues to affect
mutation rates at high nutrient levels.

The fitness effects of resistance mutations are known to
be variable among nonselective environments, particularly
for rifampicin [11]. This variation has the potential to give
artefactual differences in mutation rates among environ-
ments. We therefore estimated the fitness effects of
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Fig. 3 Effect of nutrient availability on mutation rates to rifampicin
resistance in cells without error-prone polymerases Pol IV (AdinB, N
=18, triangles) and Pol V (AumuC, N =18, squares). Cells were
grown in Davis minimal medium mixed with 1-90% of lysogeny broth
(LB) medium. The mutation rates of the two strains are not distin-
guishable (likelihood ratio test of the effect of genotype [N =36,
LRgg=2.6, P =0.11]). There is no evidence of a nonlinear relation-
ship of log mutation rate with nutrient availability (likelihood ratio test
of a quadratic effect [N =36, LRg7;=0.15, P =0.70]), but there is a
highly significant linear effect of nutrient availability (likelihood ratio
test of a linear effect [N =36, LR; =45, P=1.6 x 107'1)), see model
S-1IT in Supplementary Information. Colours represent final population
density measured by colony-forming units (see Fig. S2 for details). See
Figure S8 for an equivalent plot using final population density and S12
for mutation rates co-estimated with the relative fitness of resistant
mutants. Note the nonlinear axes

resistance mutations in the fluctuation tests reported in
Figs. 1-3 (Fig. S9). As expected, resistance mutations were,
on average, somewhat deleterious across nutrient environ-
ments for both rifamipcin and nalidixic acid. Surprisingly,
the average effect was least deleterious in intermediate
nutrient environments. This suggests that, if anything,
mutation rates in intermediate nutrient environments are
over-estimated, relative to high and low nutrient environ-
ments. Thus, the results reported in Figs. 1-3 are robust to
environmentally-dependent fitness effects of resistance
mutations (Fig. S10-12).

Discussion

Our previous work on DAMP [6], contained a paradox. In
the laboratory, E. coli displays a substantial and highly
significant decrease in mutation rate associated with final
population density, much more so than the related bacter-
ium Pseudomonas aeruginosa PAOL. Yet, in the published
literature, of all 26 microbial species with appropriate data
(including P. aeruginosa), the one with least negative
association was E. coli. Here we have resolved that paradox.

SPRINGER NATURE
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Fig. 4 Distribution of E. coli mutation rates estimated in rich media
and published from 1943 to 2016 (re-plotted from ref. [6], N=111).
Broth—rich nutrient medium, LB—rich lysogeny broth medium.
These data also include a range of genotypes and phenotypic markers
(Supplementary Data File). Note the nonlinear axes

We have shown how two mechanistically independent
plastic processes act on the mutation rate: DAMP—appar-
ent at lower final population densities (<7 x 10% cells ml™!)
—causing mutation rate to decrease with increasing nutrient
concentration; SIM—apparent at higher final population
densities (>1 x 10° cells ml’l)—causing mutation rate to
increase with nutrient concentration. E. coli is the organism
whose mutation rate has, across the last 75 years of litera-
ture, been measured across the broadest range of final
population densities (7.5 x 10°-8.9 x 10° cellsml™") [6].
This means that, like Fig. l1a or Fig. S4, the published lit-
erature includes a range of rich media and shows a mini-
mum in E. coli’s mutation rate at around 7 x 10® cells ml™!
(Fig. 4). This explains why attempting to fit a linear trend to
these data does not yield a steep negative relationship [6]. It
is also consistent with DAMP acting at low final population
densities and SIM at high densities across diverse published
studies (111 individual estimates across 12 studies), as we
find here in a single, controlled study. We cannot currently
say what particular aspect(s) or component(s) of the rich
medium used here is/are most important in effecting the
observed mutation rate changes. However, the fact that a
similar pattern is seen in published data using different
‘broth’ media suggests that, like DAMP itself [6], the
interplay of opposing pressures on mutation rate that we
have dissected here (Fig. 1b) is not unique to the particular
media we used.

It is perhaps surprising that both error-prone polymerases
Pol IV and Pol V are required for the increase in mutation
rate observed here at high LB concentrations (Fig. 3), since,
in some cases, only pol IV is required for SIM [12].
Nonetheless, in SIM, increases of base substitutions (as
opposed to insertion or deletion events), which are the
primary form of mutation underlying the rifampicin

SPRINGER NATURE

resistance assayed here [13], do frequently depend on both
of these polymerases [14—16]. Such different molecular
processes leave different signatures in the precise spectrum
of mutations observed. However, the dependence of such
mutational spectra on nutrient environment has recently
been shown to be very complex [3]. It is thus unlikely that
such spectra will explain the mechanisms of DAMP, SIM
and potentially other environmental plasticity in mutation
rates, which vary simultaneously, via different molecular
mechanisms, even across a simple nutrient gradient. How-
ever, the sort of genetic separation of environmental effects
reported here may in future help understand the complex-
ities of those spectra, which have the potential to affect the
course of evolution [17].

It seems likely a priori that the dynamics of population
growth and cell division, which differ among nutrient
environments, are involved in the mutation rate changes
observed here. For instance, environmental differences that
affect growth rate will in turn affect ploidy [18], which can
affect mutation rate estimates [19]. Therefore, we cannot
exclude the possibility that the effects of either DAMP or
SIM on mutation rate considered here are mediated by some
aspect(s) of the culture cycle that differ across different
nutrient environments. Such dynamics are largely inacces-
sible to fluctuation tests, as used here, or indeed other stan-
dard methods of assaying mutation rate [20] that consider at
least one full population growth cycle. Continuous culture,
specifically continuous culture at a fixed population density,
a turbidostat [21], may be a useful tool with which to factor
out some of these dynamics. However, still better may be to
examine the mechanistic detail of such dynamics directly
using single-cell mutation monitoring approaches [22, 23].

Variation in mutation rate among members of a popu-
lation can itself provide evolutionary advantages [24], and
modulating the mutation rate in response to the environment
could hypothetically allow organisms to optimise their rate
of adaptation [25]. Such ‘optimal’ variation involves mini-
mising mutation rates at high fitness, but allowing them to
increase away from fitness peaks. However, environmental
cues do not give direct information about an individual’s
fitness. An individual simply receives information about the
levels of particular molecules in the environment. These
could give information, for instance, about the availability
of a particular nutrient or about population density, and that
information may be linked to mechanisms involved in the
plastic control of mutation rate, e.g. Krasovec et al. [7]. But
a cue indicative of high population density could be an
indicator of an individual having high fitness (if it is part of
a successful clone), or high competition and therefore low
individual fitness. Similarly, unutilised nutrients may be
indicative of a benign environment and therefore high fit-
ness, or of a clone that has been unable to utilise resources
and therefore low individual fitness. Organisms receive
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many environmental cues and may therefore be able to
parse them to give a clear picture of the competitive
environment, enabling appropriate responses [26]. How far
this occurs in terms of mutation rate is unclear. And adap-
tive explanations are probably unnecessary to explain the
existence of SIM and perhaps DAMP, given more direct
and/or non-adaptive explanations [1, 27]. Nonetheless, it is
reasonable to speculate about the evolutionary effects of
these plastic mutation rate traits, whatever their origins,
either evolutionarily or mechanistically in terms of envir-
onmental cues. The effect of minimising mutation rate in
intermediate nutrient (and final population density) envir-
onments (Figs. 1a, S1 and S4) may be to minimise evolu-
tionary change for organisms that are doing well in a
relatively benign nutrient environment, but without exces-
sive competition, which is potentially advantageous [25].
Without clearer evidence around the evolution of these
traits and their effects on evolution beyond fluctuation tests,
any reasoning about their adaptive effects remains spec-
ulative. Nonetheless, final population density and nutrient
availability are focal points of microbial ecological com-
petition [28, 29]. Microbes have evolved numerous strate-
gies to sense and increase the acquisition of resources [30],
and they possess efficient ways of sensing population
density [31]. A threshold population density (known as
quorum) is often required to regulate a diverse array of
physiological activities [32], many of which promote stress
tolerance [33]. SIM is not known to depend on quorum-
sensing. Although DAMP requires LuxS, central to auto-
inducer 2 quorum sensing, in minimal media [7], we do not
find any role for LuxS in the conditions studied here
(Fig. S7). This is consistent with a metabolic rather than a
quorum-sensing effect on DAMP [7]. Nonetheless, muta-
tion rate can respond to the luxS genotype of a co-cultured
strain [7], indicating that, in addition to the nutrient envir-
onment studied here, biotic environment also has a role in
determining an organism’s mutation rate. The fact that
mutation rate responds in such complex ways to these
diverse environmental factors indicates that, for the de novo
evolution of traits such as antibiotic resistance, ecological
circumstances and evolutionary outcomes are tightly linked.

Materials and methods
Strains used in this study

E. coli K-12 strain KX1228 (AluxS) was derived from the
wild-type K-12 MG1655 (luxS™) [31]. E. coli AmutT
mutant is part of Keio collection [34] designated as
JWO0097-1 (F-, A(araD-araB)567, AlacZ4787(::rrnB-3), A-,
AmutT790::Kan, rph-1, A(rhaD-rhaB)568, hsdR514). E.
coli AdinB mutant is part of Keio collection designated as

JWO0221-1 (F-, A(araD-araB)567, AlacZ4787(::rrnB-3), A-,
AdinB749::kan, rph-1, A(rhaD-rhaB)568, hsdR514). E.
coli AumuC mutant is part of Keio collection designated as
JW1173-1 (F-, A(araD-araB)567, AlacZ4787(::rtnB-3), A-,
AumuC773::Kan, rph-1, A(rhaD-rhaB)568, hsdR514). The
parent of Keio collection is an E. coli strain BW25113 (F-,
A(araD-araB)567, AlacZ4787(::;rrnB-3), A-, rph-1, A
(rhaD-rhaB)568, hsdR514).

Media

We used Milli-Q water for all media. Strains were grown
with shaking (250 rpm) at 37 °C in LB medium (10 g of
NaCl, 5 g of yeast extract and 10g of tryptone per litre
[17') mixed with DM medium (0.5 g of C¢gHsNa3;07 - 2H,0,
1 g of (NH4),SO4, 2g of HKO4P and 7 g of HK,O4P-

3H,017Y. 100 mg 17! MgSO, - 7H,0 (406 umol) and 4 g
17! thiamine hydrochloride were added to DM after auto-
claving. We used 1-90% LB with a content of Mg*" ran-
ging from 40 to 35.5 umol, respectively, assuming that LB
contains on average 35 umol 17! Mg?" [35]. Selective tet-
razolium arabinose agar (TA) medium (10 g of tryptone, 1 g
of yeast extract, 5 g of NaCl, 3 g of arabinose and 0.05 g of
2,3,5-triphenyl-tetrazolium chloride 1°!) was supplemented
with freshly prepared rifampicin (50 ugml~"') or nalidixic
acid (30 ug ml~1). For all cell dilutions sterile saline (8.5 g
17! NaCl) was used. All media were solidified as necessary
with 15 g1™! agar (Difco).

Fluctuation tests

We conducted fluctuation tests with E. coli as already
explained [6, 7]. In short, strains were first inoculated from
frozen stock and grown in liquid LB medium at 37 °C and
then transferred to nonselective liquid media (LB/DM) and
allowed to grow overnight with shaking at 37 °C. E. coli
cells were again diluted into fresh LB/DM, giving a mean
initial population size (No) of 2373 (range 1.5 x 10°-1.3 x
10%). Various volumes (0.35—1 ml) of parallel cultures were
grown to saturation for 24 h at 37 °C in 96 deep-well plates.
The position of each culture on a 96-deep-well poly-
propylene plate was chosen randomly. The final population
size (N;) was determined by colony-forming units (CFU)
where appropriate dilution was plated on solid nonselective
TA medium. The final population density (D) estimated was
determined by two independent techniques using CFU and
an ATP-based assay: luminescence (LUM) was measured
using a Promega GloMax luminometer and the Promega
Bac-Titer Glo kit, according to the manufacturer’s instruc-
tions. We measured the luminescence of each culture 0.5
and 510s after adding the Bac-Titer Glo reagent and cal-
culated net luminescence as LUM = luminescences;os —
luminescence 5. Each estimate of D and N; was averaged

SPRINGER NATURE
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across three independent cultures. Evaporation (routinely
monitored by weighing the plate before and after 24 h of
incubation) was accounted for in the N, value determined by
CFU and was also used in statistical modelling as a variance
covariate. We obtained the observed number of mutants
resistant to rifampicin or nalidixic acid, r, by plating the
entirety of the remaining cultures onto solid selective TA
medium (4.5-cm plates in Figs. 1 and 2 and 9-cm plates in
Fig. 3) that allows spontaneous mutants to form colonies.
Plates were incubated at 37 °C, and mutants were counted at
the earliest possible time after plating. For rifampicin plates,
this was 44-48 h, when nalidixic acid was used the incu-
bation time was 68—72 h.

For Figs. 1a, 2 and 3 we used 13, 3 and 4 independent
experimental blocks, respectively, carried out on different
days. Within an experimental block multiple 96-well plates
were used. Any individual mutation rate estimate requires
multiple parallel cultures, which were all carried out on a
particular plate. For Figs. 1a, 2 and 3 the median (with an
interquartile range) of parallel cultures used per mutation
rate estimate was 16 (21-16), 16 (16—16) and 16 (16-16),
respectively.

Estimation of mutation rates

To estimate the number of mutational events, m, from the
observed number of mutants, we employed the Ma-Sandri-
Sarkar maximum-likelihood method implemented by the
FALCOR web tool [36]. The mutation rate per cell per
generation is calculated as m divided by the final population
size, N, determined by CFU. This approach does not
account for potentially important issues that may affect
mutation rate estimates. Crucially, if there is a cost to car-
rying a resistance allele in the fluctuation test environment,
this can result in an underestimation of the mutation rate.
This issue can be corrected for by co-estimating the average
fitness effect of resistance mutations with the number of
mutational events [37]. In addition, variation in N, may also
affect the estimates and may also be accounted for [38]. We
therefore co-estimated mutation rates and fitness effects,
accounting for variability in N, using the flan package in R
[39], also setting the Winsorization parameter to remove the
effects of ‘jackpots’ with uncountably large numbers of
mutants (greater than 150 on 4.5-cm plates and greater than
1000 on 9-cm plates). Since the estimated fitnesses (Fig. S9)
tend to reinforce the patterns seen in Figs. 1-3, we report
the results of the simpler and more widely used calculations
in the main text as being more conservative.

Statistical analysis

All statistical analysis was executed in R v3.3.1 [40] and
nlme v3.1 packages for linear mixed effects modelling [41].
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This enabled the inclusion within the same model of
experimental factors (fixed effects), blocking effects (ran-
dom effects) and factors affecting variance (giving hetero-
scedasticity), as described in Supplementary Information. In
all cases log, mutation rates were used. Details of models
and their fitting are given in Supplementary Information:
diagnostic plots in Supplementary Figures S13-S15,
ANOVA tables for each model are given in Supplementary
Tables S3—S5. The code and data to reproduce the main text
figures are given in the accompanying R script, and Sup-
plementary Data File, respectively. The content of the Sup-
plementary Data File is explained in Supplementary
Table S2.
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