121 research outputs found

    A New Code for Nonlinear Force-Free Field Extrapolation of the Global Corona

    Full text link
    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolation from photospheric magnetogram using physical models, e.g., the nonlinear force-free field (NLFFF) model as usually adopted. Most of the currently available NLFFF codes have been developed with computational volume like Cartesian box or spherical wedge while a global full-sphere extrapolation is still under developing. A high-performance global extrapolation code is in particular urgently needed considering that Solar Dynamics Observatory (SDO) can provide full-disk magnetogram with resolution up to 4096×40964096\times 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low & Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.Comment: Accepted by ApJ, 26 pages, 10 figure

    A mutation degree model for the identification of transcriptional regulatory elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current approaches for identifying transcriptional regulatory elements are mainly via the combination of two properties, the evolutionary conservation and the overrepresentation of functional elements in the promoters of co-regulated genes. Despite the development of many motif detection algorithms, the discovery of conserved motifs in a wide range of phylogenetically related promoters is still a challenge, especially for the short motifs embedded in distantly related gene promoters or very closely related promoters, or in the situation that there are not enough orthologous genes available.</p> <p>Results</p> <p>A mutation degree model is proposed and a new word counting method is developed for the identification of transcriptional regulatory elements from a set of co-expressed genes. The new method comprises two parts: 1) identifying overrepresented oligo-nucleotides in promoters of co-expressed genes, 2) estimating the conservation of the oligo-nucleotides in promoters of phylogenetically related genes by the mutation degree model. Compared with the performance of other algorithms, our method shows the advantages of low false positive rate and higher specificity, especially the robustness to noisy data. Applying the method to co-expressed gene sets from Arabidopsis, most of known <it>cis</it>-elements were successfully detected. The tool and example are available at <url>http://mcube.nju.edu.cn/jwang/lab/soft/ocw/OCW.html</url>.</p> <p>Conclusions</p> <p>The mutation degree model proposed in this paper is adapted to phylogenetic data of different qualities, and to a wide range of evolutionary distances. The new word-counting method based on this model has the advantage of better performance in detecting short sequence of <it>cis</it>-elements from co-expressed genes of eukaryotes and is robust to less complete phylogenetic data.</p

    Comparison of short-segment monoaxial and polyaxial pedicle screw fixation combined with intermediate screws in traumatic thoracolumbar fractures: a finite element study and clinical radiographic review

    Get PDF
    OBJECTIVES: No studies have compared monoaxial and polyaxial pedicle screws with regard to the von Mises stress of the instrumentation, intradiscal pressures of the adjacent segment and adjacent segment degeneration. METHODS: Short-segment monoaxial/polyaxial pedicle screw fixation techniques were compared using finite element methods, and the redistributed T11-L1 segment range of motion, largest maximal von Mises stress of the instrumentation, and intradiscal pressures of the adjacent segment under displacement loading were evaluated. Radiographic results of 230 patients with traumatic thoracolumbar fractures treated with these fixations were reviewed, and the sagittal Cobb’s angle, vertebral body angle, anterior vertebral body height of the fractured vertebrae and adjacent segment degeneration were calculated and evaluated. RESULTS: The largest maximal values of the von Mises stress were 376.8 MPa for the pedicle screws in the short-segment monoaxial pedicle screw fixation model and 439.9 MPa for the rods in the intermediate monoaxial pedicle screw fixation model. The maximal intradiscal pressures of the upper adjacent segments were all greater than those of the lower adjacent segments. The maximal intradiscal pressures of the monoaxial pedicle screw fixation model were larger than those in the corresponding segments of the normal model. The radiographic results at the final follow-up evaluation showed that the mean loss of correction of the sagittal Cobb’s angle, vertebral body angle and anterior vertebral body height were smallest in the intermediate monoaxial pedicle screw fixation group. Adjacent segment degeneration was less likely to be observed in the intermediate polyaxial pedicle screw fixation group but more likely to be observed in the intermediate monoaxial pedicle screw fixation group. CONCLUSION: Smaller von Mises stress in the pedicle screws and lower intradiscal pressure in the adjacent segment were observed in the polyaxial screw model than in the monoaxial pedicle screw fixation spine models. Fracture-level fixation could significantly correct kyphosis and reduce correction loss, and adjacent segment degeneration was less likely to be observed in the intermediate polyaxial pedicle screw fixation group

    Impact of Stretching Exercises on Work-Related Musculoskeletal Disorders: A Systematic Review

    Get PDF
    Objective: This study aims to compile the latest information concerning workplace stretching regimens and to give a panoramic view of their effectiveness in reducing work-related Musculoskeletal disorders (MSDs). Methods: Searching MEDLINE, Embase, CINAHL, PEDro, Web of Science, Scopus, Google Scholar, SPORTDiscus and PubMed databases from 2010 to 2022 found 723 eligible studies, based on predefined inclusion criteria. Results: In the review, 14 included studies recruited subjects aged 18 years, with males (n=813), females (n=5141), and some research did not identify gender (n=3). The included studies were of both high (n=6) and low quality (n=8). Seven studies revealed stretching exercises to be an effective and safe non-pharmacological intervention for MSDs, and one study included an active control group observed better improvement in the treatment group. Four trials showed a significant effect from stretching exercises as a stand-alone treatment. Three studies revealed that stretching exercises had a meaningful and major effect on MSDs complaints, while two studies reported no significant results when utilizing Anti-fatigue mats in addition to stretching. Conclusion: The current study indicated that stretching exercises are a crucial and useful technique for preventing and treating pain and function in Work-related MSDs affecting the neck, shoulder, back, etc. Workplace/ergonomic changes can enhance the results of stretching exercises

    Long Noncoding RNA Expression Signatures of Metastatic Nasopharyngeal Carcinoma and Their Prognostic Value

    Get PDF
    Long noncoding RNAs (lncRNAs) have recently been found to play important roles in various cancer types. The elucidation of genome-wide lncRNA expression patterns in metastatic nasopharyngeal carcinoma (NPC) could reveal novel mechanisms underlying NPC carcinogenesis and progression. In this study, lncRNA expression profiling was performed on metastatic and primary NPC tumors, and the differentially expressed lncRNAs between these samples were identified. A total of 33,045 lncRNA probes were generated for our microarray based on authoritative data sources, including RefSeq, UCSC Knowngenes, Ensembl, and related literature. Using these probes, 8,088 lncRNAs were found to be significantly differentially expressed (2-fold). To identify the prognostic value of these differentially expressed lncRNAs, four lncRNAs (LOC84740, ENST00000498296, AL359062, and ENST00000438550) were selected; their expression levels were measured in an independent panel of 106 primary NPC samples via QPCR. Among these lncRNAs, ENST00000438550 expression was demonstrated to be significantly correlated with NPC disease progression. A survival analysis showed that a high expression level of ENST00000438550 was an independent indicator of disease progression in NPC patients (). In summary, this study may provide novel diagnostic and prognostic biomarkers for NPC, as well as a novel understanding of the mechanism underlying NPC metastasis and potential targets for future treatment

    USP10 is a potential mediator for vagus nerve stimulation to alleviate neuroinflammation in ischaemic stroke by inhibiting NF-κB signalling pathway

    Get PDF
    BackgroundVagus nerve stimulation (VNS) has a protective effect on neurological recovery in ischaemic stroke. However, its underlying mechanism remains to be clarified. Ubiquitin-specific protease 10 (USP10), a member of the ubiquitin-specific protease family, has been shown to inhibit the activation of the NF-κB signalling pathway. Therefore, this study investigated whether USP10 plays a key role in the protective effect of VNS against ischemic stroke and explore its mechanism.MethodsIschaemic stroke model was constructed by transient middle cerebral artery occlusion (tMCAO) in mice. VNS was performed at 30 min, 24hr, and 48hr after the establishment of tMCAO model. USP10 expression induced by VNS after tMCAO was measured. LV-shUSP10 was used to establish the model with low expression of USP10 by stereotaxic injection technique. The effects of VNS with or without USP10 silencing on neurological deficits, cerebral infarct volume, NF-κB pathway activation, glial cell activation, and release of pro-inflammation cytokines were assessed.ResultsVNS enhanced the expression of USP10 following tMCAO. VNS ameliorated neurological deficits and reduced cerebral infarct volume, but this effect was inhibited by silencing of USP10. Activation of the NF-κB pathway and the expression of inflammatory cytokines induced by tMCAO were suppressed by VNS. Moreover, VNS promoted the pro-to-anti-inflammatory response of microglia and inhibited activation of astrocytes, while silencing of USP10 prevented the neuroprotective and anti-neuroinflammatory effects of VNS.ConclusionUSP10 is a potential mediator for VNS to alleviate neurological deficits, neuroinflammation, and glial cell activation in ischaemic stroke by inhibiting NF-κB signalling pathway

    Momentum-Resolved Visualization of Electronic Evolution in Doping a Mott Insulator

    Full text link
    High temperature superconductivity in cuprates arises from doping a parent Mott insulator by electrons or holes. A central issue is how the Mott gap evolves and the low-energy states emerge with doping. Here we report angle-resolved photoemission spectroscopy measurements on a cuprate parent compound by sequential in situ electron doping. The chemical potential jumps to the bottom of the upper Hubbard band upon a slight electron doping, making it possible to directly visualize the charge transfer band and the full Mott gap region. With increasing doping, the Mott gap rapidly collapses due to the spectral weight transfer from the charge transfer band to the gapped region and the induced low-energy states emerge in a wide energy range inside the Mott gap. These results provide key information on the electronic evolution in doping a Mott insulator and establish a basis for developing microscopic theories for cuprate superconductivity.Comment: 23 pages, 5 figure
    • …
    corecore