108 research outputs found

    Implementation of an AMIDAR-based Java Processor

    Get PDF
    This thesis presents a Java processor based on the Adaptive Microinstruction Driven Architecture (AMIDAR). This processor is intended as a research platform for investigating adaptive processor architectures. Combined with a configurable accelerator, it is able to detect and speed up hot spots of arbitrary applications dynamically. In contrast to classical RISC processors, an AMIDAR-based processor consists of four main types of components: a token machine, functional units (FUs), a token distribution network and an FU interconnect structure. The token machine is a specialized functional unit and controls the other FUs by means of tokens. These tokens are delivered to the FUs over the token distribution network. The tokens inform the FUs about what to do with input data and where to send the results. Data is exchanged among the FUs over the FU interconnect structure. Based on the virtual machine architecture defined by the Java bytecode, a total of six FUs have been developed for the Java processor, namely a frame stack, a heap manager, a thread scheduler, a debugger, an integer ALU and a floating-point unit. Using these FUs, the processor can already execute the SPEC JVM98 benchmark suite properly. This indicates that it can be employed to run a broad variety of applications rather than embedded software only. Besides bytecode execution, several enhanced features have also been implemented in the processor to improve its performance and usability. First, the processor includes an object cache using a novel cache index generation scheme that provides a better average hit rate than the classical XOR-based scheme. Second, a hardware garbage collector has been integrated into the heap manager, which greatly reduces the overhead caused by the garbage collection process. Third, thread scheduling has been realized in hardware as well, which allows it to be performed concurrently with the running application. Furthermore, a complete debugging framework has been developed for the processor, which provides powerful debugging functionalities at both software and hardware levels

    PTEN regulates lung endodermal morphogenesis through MEK/ERK pathway

    Get PDF
    AbstractPten is a multifunctional tumor suppressor. Deletions and mutations in the Pten gene have been associated with multiple forms of human cancers. Pten is a central regulator of several signaling pathways that influences multiple cellular functions. One such function is in cell motility and migration, although the precise mechanism remains unknown. In this study, we deleted Pten in the embryonic lung epithelium using Gata5-cre mice. Absence of Pten blocked branching morphogenesis and ERK and AKT phosphorylation at E12.5. In an explant model, PtenΔ/Δ mesenchyme-free embryonic lung endoderm failed to branch. Inhibition of budding in PtenΔ/Δ explants was associated with major changes in cell migration, while cell proliferation was not affected. We further examined the role of ERK and AKT in branching morphogenesis by conditional, endodermal-specific mutants which blocked ERK or AKT phosphorylation. MEKDM/+; Gata5-cre (blocking of ERK phosphorylation) lung showed more severe phenotype in branching morphogenesis. The inhibition of budding was also associated with disruption of cell migration. Thus, the mechanisms by which Pten is required for early endodermal morphogenesis may involve ERK, but not AKT, mediated cell migration

    Mechanisms of TGFβ inhibition of LUNG endodermal morphogenesis: The role of TβRII, Smads, Nkx2.1 and Pten

    Get PDF
    AbstractTransforming growth factor-beta is a multifunctional growth factor with roles in normal development and disease pathogenesis. One such role is in inhibition of lung branching morphogenesis, although the precise mechanism remains unknown. In an explant model, all three TGFβ isoforms inhibited FGF10-induced morphogenesis of mesenchyme-free embryonic lung endoderm. Inhibition of budding by TGFβ was partially abrogated in endodermal explants from Smad3−/− or conditional endodermal-specific Smad4Δ/Δ embryonic lungs. Endodermal explants from conditional TGFβ receptor II knockout lungs were entirely refractive to TGFβ-induced inhibition. Inhibition of morphogenesis was associated with dedifferentiation of endodermal cells as documented by a decrease in key transcriptional factor, NKX2.1 protein, and its downstream target, surfactant protein C (SpC). TGFβ reduced the proliferation of wild-type endodermal cells within the explants as assessed by BrdU labeling. Gene expression analysis showed increased levels of mRNA for Pten, a key regulator of cell proliferation. Conditional, endodermal-specific deletion of Pten overcame TGFβ's inhibitory effect on cell proliferation, but did not restore morphogenesis. Thus, the mechanisms by which TGFβ inhibits FGF10-induced lung endodermal morphogenesis may entail both inhibition of cell proliferation, through increased Pten, as well as inhibition or interference with morphogenetic mediators such as Nkx2.1. Both of the latter are dependent on signaling through TβRII

    SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains

    Get PDF
    Mechanisms of gene repression by transforming growth factor-beta (TGF-beta) are not well understood. TGF-beta represses transcription of pulmonary surfactant protein-B gene in lung epithelial cells. Repression is mediated by SMAD3 through interactions with NKX2.1 and FOXA1, two key transcription factors that are positive regulators of SpB transcription. In this study, we found that SMAD3 interacts through its MAD domains, MH1 and MH2 with NKX2.1 and FOXA1 proteins. The sites of interaction on NKX2.1 are located within the NH2 and COOH domains, known to be involved in transactivation function. In comparison, weaker interaction of FOXA1 winged helix, and the NH2-terminal domains was documented with SMAD3. Both in vitro studies and in vivo ChIP assays show that interaction of SMAD3 MH1 and MH2 domains with NKX2.1 and FOXA1 results in reduced binding of NKX2.1 and FOXA1 to their cognate DNA-binding sites, and diminished promoter occupancy within the SpB promoter. Thus, these studies reveal for the first time a mechanism of TGF-beta-induced SpB gene repression that involves interactions between specific SMAD3 domains and the corresponding functional sites on NKX2.1 and FOXA1 transcription factors

    Tissue-dependent consequences of Apc inactivation on proliferation and differentiation of ciliated cell progenitors via Wnt and Notch signaling

    Get PDF
    The molecular signals that control decisions regarding progenitor/stem cell proliferation versus differentiation are not fully understood. Differentiation of motile cilia from progenitor/stem cells may offer a simple tractable model to investigate this process. Wnt and Notch represent two key signaling pathways in progenitor/stem cell behavior in a number of tissues. Adenomatous Polyposis Coli, Apc is a negative regulator of the Wnt pathway and a well known multifunctional protein. Using the cre-LoxP system we inactivated the Apc locus via Foxj1-cre, which is expressed in cells committed to ciliated cell lineage. We then characterized the consequent phenotype in two select tissues that bear motile cilia, the lung and the testis. In the lung, Apc deletion induced β-catenin accumulation and Jag1 expression in ciliated cells and by lateral induction, triggered Notch signaling in adjacent Clara cells. In the bronchiolar epithelium, absence of Apc blocked the differentiation of a subpopulation of cells committed to the ciliogenesis program. In the human pulmonary adenocarcinoma cells, Apc over-expression inhibited Jag1 expression and promoted motile ciliogenic gene expression program including Foxj1, revealing the potential mechanism. In the testis, Apc inactivation induced β-catenin accumulation in the spermatogonia, but silenced Notch signaling and depleted spermatogonial stem cells, associated with reduced proliferation, resulting in male infertility. In sum, the present comparative analysis reveals the tissue-dependent consequences of Apc inactivation on proliferation and differentiation of ciliated cell progenitors by coordinating Wnt and Notch signaling

    Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK). The functions of Ror2 in mediating the non-canonical Wnt signaling have been well established. The role of Ror2 in canonical Wnt signaling is not fully understood.</p> <p>Results</p> <p>Here we report that Ror2 also positively modulates Wnt3a-activated canonical signaling in a lung carcinoma, H441 cell line. This activity of Ror2 is dependent on cooperative interactions with Fzd2 but not Fzd7. In addition, Ror2-mediated enhancement of canonical signaling requires the extracellular CRD, but not the intracellular PRD domain of Ror2. We further provide evidence that the positive effect of Ror2 on canonical Wnt signaling is inhibited by Dkk1 and Krm1 suggesting that Ror2 enhances an Lrp-dependent STF response.</p> <p>Conclusion</p> <p>The current study demonstrates the function of Ror2 in modulating canonical Wnt signaling. These findings support a functional scheme whereby regulation of Wnt signaling is achieved by cooperative functions of multiple mediators.</p

    WNT5a-ROR Signaling Is Essential for Alveologenesis.

    No full text
    corecore