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ABSTRACT: Low selectivity is one of the key problems which limit the application 

of plasma in chemical fields. High selectivity and concentration of H2O2 are critical in 

the direct synthesis of H2O2. Herein, we report that the selectivity of the H2/O2 plasma 

reaction can be controlled by specific energy input (SEI), i.e. low SEI leads to high 

H2O2 selectivity. When the SEI was fixed at 2.08 J/ml, the H2O2 selectivity reached 

91% with 17% O2 conversion, and a H2O2 solution with high concentration (90 wt.%) 

was achieved. Plasma diagnostics and theoretical calculation results indicate that, low 

SEI results in low electron density, which leads to high H2O2 selectivity but low O2 

conversion. Furthermore, the collision cross sections of H2 and O2 molecules with 

electrons indicate that the H2/O2 plasma, with average electron energy of 1~1.5 eV, 

can synthesize H2O2 with high selectivity and high O2 conversion. 
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1 Introduction 

  Plasma as the fourth state of natural matter has great potential in chemistry, 

physics and biomedicine [1-4]. During the 1960~80’s, chemical synthesis using 

plasma chemistry was a hot topic[5-8]. In recent years, non-thermal plasma (NTP) 

has again been adopted by chemists for chemicals conversion [9-11], materials 

preparation [12-18], and environmental cleanup[19, 20]. Although NTP shows some 

unique features in the chemical reaction processes mentioned above, low selectivity 

to the target product is a critical problem researchers have to face, in particular in the 

synthesis of chemicals. Until now, only a few simple plasma reactions with only one 

reactant (e.g., acetylene synthesis) or one product (e.g., ozone synthesis) have been 

applied on industrial scale.  

  Hydrogen peroxide (H2O2), as one of the 100 most important chemicals in the 

world, has extensive applications [21], such as in paper manufacturing, 

environmental protection (treatment of waste water and removal of organic 

pollutants), metallurgy, chemical synthesis (propylene oxide, cyclohexanone oxime, 

etc), medical treatment (disinfectant), the electronics industry (as a cleaning agent, 

corrosion inhibitor and as a photoresist removal agent of semiconductor crystal 

plates in microelectronics, displays and photovoltaics), as well as aerospace (liquid 

chemical propellant) [22-25].
 
Industrially, H2O2 is almost exclusively produced by a 

Palladium-catalyzed anthraquinone (AQ) process, where H2O2 is synthesized 

through sequential hydrogenation and oxidation of alkyl anthraquinone [26].
 
Thus, 

the AQ process has high safety regarding the non-direct contact between H2 and O2. 
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However, the emission of exhaust gas (mesitylene isomers), waste water (containing 

aromatics, 2-ethyl-anthraquinone, tri-octyl phosphate, tert-butyl urea and K2CO3 lye) 

and solid waste (activated alumina) is unacceptable nowadays. In addition, for 

economic feasibility, the AQ process can only be operated at large-scale, resulting in 

some security risks in the transportation and storage of concentrated H2O2; a strict 

safety policy must therefore be followed.  

  During the last two decades, the direct synthesis of hydrogen peroxide (DSHP) 

from molecular H2 and O2 over noble metal catalysts, such as Pd [27-30], Au 

[31-33], Pd-Au [34-38], Pd-Pt [39-40],
 
Pd-Sn [41] and Pt-Au-Pd [42, 43] has 

attracted much attention. The DSHP is a green and economic process in comparison 

to the industrial AQ process, and it has great potential to be applied on a small scale, 

i.e., operated where needed to produce a desired H2O2 concentration [44].
 
 

However, due to the usage of metal catalysts and organic solvent, it is difficult to get 

pure H2O2 solution directly via the DSHP process; thus some separation and 

purification units must be employed, which are unfavorable and impractical for small 

scale application. Furthermore, the side reaction of H2O2 hydrogenation occurs on Pd 

catalysts, which results in a decrease of H2O2 concentration. Currently, the highest 

H2O2 concentration obtained by DSHP is still only around ~10 wt.%, which must be 

improved to make the process feasible (usually about 30 wt.%).  

  Our previous research has demonstrated that the DSHP could also be realized 

through a safe H2/O2 plasma reaction in a double dielectric barrier discharge 

(DDBD) reactor [45, 46]. The plasma DSHP is a green gas-phase radical reaction 
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process and it does not use any catalysts or solvents, thus high purity H2O2 could be 

obtained directly without any purification operations. We also found out that, in the 

plasma DSHP process, the dissociation of H2 (driven by electrons through inelastic 

collision) induced the H2/O2 plasma reaction to synthesize H2O2 through a chain 

termination reaction path (R1-R2). Meanwhile, the activation of O2 (also driven by 

electrons through inelastic collision) resulted in the formation of H2O through a 

chain branching reaction path (R3-R5). Once the O2 is activated, the by-product H2O 

will be easily produced. The difficulty in achieving high selectivity of H2O2 therefore 

lies in activating the H2 molecule selectively whilst not activating O2 molecule. In 

our previous studies, different kinds of DBD reactors were used, but the activation of 

O2 could not be inhibited completely. Thus, the optimized H2O2 selectivity was 

nearly 65 % [45, 47, 48], that is, the concentration of H2O2 solution obtained by 

plasma DSHP was about 65 wt.%.  

  H + O2 → HO2                                               R1 

  HO2 + HO2 →H2O2 + O2                                       R2 

  H + O2* → HO + O                                           R3 

  O + H2 → H + OH                                            R4 

  OH + H2 → H2O + H                                          R5 

  Herein, we report that, in a double dielectric barrier discharge (DDBD) reactor, the 

selectivity of H2O2 in the H2/O2 plasma reaction process can be controlled by 

adjusting the specific energy density (SEI). Lower SEI is favorable to achieve higher 

H2O2 selectivity.  
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2 Experimental 

2.1 Experimental Setup 

  The experimental setup is shown in Figure 1. The flow of H2 and O2 were 

controlled by mass flow controllers (H2 170 ml/min and O2 10 ml/min), and the 

composition of H2/O2 mixture was controlled so as to be out of the explosion limit 

(explosion limit 4%-94%). Before discharge, H2 and O2 were mixed homogeneously 

and passed through the DDBD plasma reactor for about 10 minutes to remove O2 

and N2 to ensure a safe operating procedure. The temperature of the circulating water 

was maintained at ca. 2 
o
C by a refrigeration unit. Then the voltage of the high 

voltage electrode (HVE) was adjusted to initiate the discharge (High performance 

computerised plasma and corona discharge experiment generators CTP-2000K). The 

exhaust gas was analyzed by an on-line gas chromatograph. The H2O2 concentration 

of the collected product solution was determined by iodimetry, then the H2O2 

selectivity was calculated using formula F2. The discharge voltage, discharge current 

and power were measured on site by a digital oscilloscope (Tektronix DPO 3012, 

HV probe Tektronix P6015A, current probe Pearson 6585). The discharge images 

were taken by a camera (Nikon D50). The optical emission spectra of H2/O2 plasma 

were monitored by a spectrograph (Princeton Instrument SP 2758, 300 G/mm grating, 

0.5 s exposure time). When a H2/O2 mixture is transformed into a H2/O2 DBD 

plasma, H2O2 and H2O are formed through gas-phase radical reactions and H2O is 

the only by-product. The produced H2O2 and H2O will condense on the reactor wall, 

and then flow into the collector, which is cooled by an ethylene glycol cryogenic 
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device (-20 
o
C).  

  The conversion of O2 was defined using formula F1, in which the moles of O2 

converted was detected by the gas chromatograph. The selectivity of H2O2 was 

calculated using formula F2, in which the moles of H2O2 produced were measured 

by iodimetry method. Energy consumption was calculated using formula F3, in 

which the energy consumed was the mathematical product of SEI and total gas flow 

rate. The SEI was the discharge power divided by total gas flow rate (180 ml/min = 3 

ml/s).  

  %100
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2.2 Plasma Reactor 

  The DDBD reactor consisted of a pair of coaxial glass cylinders and two 

electrodes (Figure 2). The inner cylinder was made of pyrex with an inner diameter 

of 8.6 mm and an outer diameter of 11mm. The wall of the inner cylinder served as a 

dielectric barrier for the discharge. The outer cylinder, which had a liquid inlet at the 

bottom and a liquid outlet at the top, was also made of glass and was used to form an 

annular gap in between the inner and outer cylinders. The high-voltage electrode 

(HVE) was a thin pyrex-tube (2.0 mm inner diameter and 4.0 mm outer diameter) 

fully filled with Nickel powder (≤ 48 μm). It was installed in the axis of the cylinders 
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and connected to the high voltage power supply (AC). The grounding electrode (GE) 

was an 0.1 wt% NaCl solution, which filled the annular gap of the glass cylinders, 

and was linked to the grounding wire through a tungsten connection welded across 

the wall of the outer cylinder. When the reactor was set to work, the aqueous 

solution of the liquid grounding electrode was recycled so that it served as a cooling 

agent at the same time. The HV electrode and the grounding electrode formed a 

cylindrical discharge space, with a length of 250 mm and a volume of 11.375 ml.  

2.3 Measurement of H2O2 Concentration and Purity 

  The concentration of H2O2 solution produced was measured using an iodimetry 

method. Firstly, 0.5 g H2O2 product was transferred into a volumetric flask (50 ml) 

using an electronic balance, and then diluted to 50 ml using distilled water. Then 0.2 

ml diluted H2O2 solution was transferred into a conical flask, before diluting it with 

15 ml deionized water. After that, appropriate dilute H2SO4 solution was added, 

along with excess KI powder and 2 drops ammonium molybdate solution (2 wt.%), 

into the conical flask. This was shaken up and left to stand for ten minutes. The 

titration operation was then carried out using 0.01 mol/L sodium thiosulfate solution. 

The H2O2 concentration, moles and mass can be calculated based on the reactions R6 

and R7. The purity of the produced H2O2 solution, i.e. the content of impurities, was 

analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES, 

Optima 2000 DV, Perkin Elmer).  

  2KI + H2SO4 + H2O2 → K2SO4 + 2H2O + I2                         R6   

  I2 + 2Na2S2O3 → Na2S4O6 + 2NaI                                       R7 



 

  9 

2.4 Measurement of Electrical Parameters of the H2/O2 DBD Plasma 

  According to the relative dielectric constant of pyrex material and the geometric 

dimension of the two layer barrier dielectrics in the DDBD reactor, their capacitors 

have been calculated to be Cd1 9.0265×10
-11 

F and Cd2 2.5437×10
-10 

F. Thus, the total 

dielectrics capacitor (Cd) has been calculated to be 6.65×10
-11

F using formula F4 

(series connection).  

  21
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  The electrical parameter of H2/O2 DBD plasma has been measured using the 

method described in the literature [49]. An external capacitor (Cext) with a 

capacitance value of 2.28×10
-8 

F has been used as shown in Figure 1. The applied 

voltage (Ua), external capacitor voltage (Uc) and discharge current can be directly 

detected by a digital oscilloscope. The dielectric voltage (Ud) can then be calculated 

using the formula F5. The breakdown voltage, i.e., gas voltage (Ug) can be calculated 

using the formula F6. 
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3 Modeling 

3.1 Descriptions of the Simulations 

  A 0-dimension time-evaluated model was adopted using the software ZDplaskin 

[50, 51].
 
We assumed that no surface reactions and recirculation appeared in our 
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double dielectric barrier discharge (DDBD) reactor so that all species present in the 

plasma gas satisfy the conditions for solving the Boltzmann Equation F7.    

v [ ]
f e

f E f C f
t m




    


               F7 

  Where E is the electric field, m is the electron mass, f is the electron energy 

distribution function (EEDF), e is the elementary charge, v is the average electron 

velocity and C[f] represents the change rate of f. This simulation can be classified 

into three main blocks; thirty-six electron-neutral/radical reactions, including 

momentum transfer, excitations/de-excitations, dissociation and ionization reactions; 

twenty-four neutral-neutral reactions; five ion-neutral/radical/ion reactions. All 

simulated species are shown in Table 1. Some other data used in this modeling has 

been summarized in Supporting Information (Table S1, S2 and S3).  

3.2 Physical Model 

  The time evolution density of species, Ni=1…imax, can be written as equation F8. 

The source terms Qij describe the contribution from each diverse reaction process, j 

=1…jmax, defined by user’s input file.  

  

[ ]
( )

1

max
i

ij

j
d N

Q t
dt j



                         F8 

  In order to provide a better understanding, an example of the reaction R8 has been 

provided. The reaction rate can be calculated in equation F9. Therefore, the source 

terms will be expressed as equation F10, F11and F12. 

  aA + bB → a’A + cC                                           R8                                       
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  R = kj [A]
a
[B]

b 
                         F9 

  QA = (a’ - a)R                                                 F10 

  QB = -bR                                                     F11 

  QC = cR                                       F12 

  However, for some temperature-sensitive reactions, the temperature transport is 

then important (F13). 

  

[ ]
1 1

max
gas gas

j j elast e

j
N dT

R P N
dt j




   
 


  

                            F13 

  Here γ is the specific gas heat ratio, Pelast∙[Ne] means the joule heating caused by 

discharge current, and δɛj is the energy gap between the initial and final diabatic 

surfaces of the given reaction step. Additionally, calculations of the rate constants, kj, 

are different if electrons are taken into account. For the neutral-neutral reactions, the 

constants can be obtained from the three-parameter Arrhenius form F14. 

  
Kj(T) = Aj T

Bj 
exp (- Ej∙RT

-1
)                         F14 

  The unit of Kj is in m
3
/s. T is gas temperature in Kelvin. The three parameters of 

Aj, Bj and Ej represent pre-exponential factor, temperature factor, and activation 

energy, respectively. There has been plenty of research conducted into the synthesis 

of H2O2, so all parameters used in this work can be found from NIST database.  

  However, for the electron-impact reactions, a special range of E/n was used to 

solve the Boltzmann Equation F7 in order to obtain the electron distribution function 
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and mean electron temperature, while the rate constants for all electron-impact 

reactions can be calculated by equation F15.  

0
kk G Fd 



                             F15 

  Where σk is the cross-section of the target particle, F represents the EEDFs, and ɛ 

(ɛ =v/G) is the electron energy in volt ( 2 /G e m ). The maximum value of E/n is 

observed around 88 Td.  

4 Results and Discussion 

4.1 H2/O2 Plasma Reaction Results 

  As shown in Table 2, when the SEI increased from 2.08 to 7.09 J/ml, the O2 

conversion increased gradually from 17 % to 99 %; however, the H2O2 selectivity 

decreased gradually from 91% to 20 % and the concentration of H2O2 also showed a 

similar trend with H2O2 selectivity. That is, in the case of low SEI, the H2O2 could be 

synthesized with high selectivity, although the O2 conversion was low. With the 

increase of SEI, the energy consumption for the production of unit mass of H2O2 

(Table 2) also increased. At low SEI of 2.08 J/ml, the energy consumption was 

reduced to 44 kW·h/kgH2O2, which was lower than the previous result of 53 

kW·h/kgH2O2 [46]. The energy consumption reduction could be attributed to the 

improvement in H2O2 selectivity. When the SEI was fixed at 2.08 J/ml, a long-run 

operation with 500 hours continuous synthesis was conducted, the result of which is 

shown in Figure 3. It can be seen that the O2 conversion remained relatively stable 

whilst the volume of H2O2 solution obtained (90 wt.%) increased linearly with 

reaction time. This means that the H2/O2 plasma reaction process can be operated 

with high stability, which is critical for future practical application.  
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  After the 500 hours reaction, the concentration of the H2O2 product obtained was 

measured to be as high as 90 wt%. Furthermore, the content of impurities in the 

H2O2 product obtained was measured using an inductively coupled plasma atomic 

emission spectroscopy. The results (Table 3) indicate that the content of inorganic 

ion impurities were at Grade 2 of the equipment and materials international standards 

(Table 4), hence it can be used in the electronics industry. Our previous paper 

reported that Grade 1 electronic H2O2 solution could be synthesized by a H2/O2 

plasma reaction. The reason for improvement of purity could be that the SEI has 

decreased, and lower SEI means fewer impurities (Zn, As, Mg, Ca and B) are 

sputtered out of dielectrics by DBD. Generally, at ambient temperature, high 

concentration H2O2 solution readily decomposes. Additionally, some metal ions can 

also catalyze the decomposition of H2O2; thus stabilizers are usually used. However, 

in this experiment, the 90 wt% H2O2 solution can be stored stably without using any 

stabilizers. The reasons might be, firstly, H2O2 solution was stored in a collector 

(Figure 1) cooled at a low temperature (-20 
o
C) by an ethylene glycol cryogenic 

device. Secondly, the content of some metal ions in H2O2 solution produced is very 

low (Table 3) .  

  Commercially, H2O2 is classified by its mass concentration, i.e., 30%, 35%, 50%, 

60% and 70%, corresponding to different industrial applications. These commercial 

H2O2 solutions usually contain a small quantity of mechanical impurities, inorganic 

impurities and organic impurities. However, some high-end applications (electronic 

industry, medical treatment, food sterilization and aerospace) require a high purity or 
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high concentration H2O2 product. In industry, high purity H2O2 (electronic grade or 

food grade) is produced from the commercial H2O2 mentioned above by using a 

variety of purification methods (distillation, ion exchange resins, membrane 

separation, supercritical fluid extraction and crystallization). Concentrated H2O2 

(propellant grade H2O2, higher than 90 wt.%) is usually produced from high purity 

H2O2 through some deep enrichment operations (vacuum distillation and 

recrystallization operations). These purification and enrichment operations have a 

huge equipment cost, a long production cycle and consume a copious amount of 

energy. Therefore, the value and price of H2O2 products usually increase 

exponentially with the concentration and purity of the H2O2 solution.  

  The above experimental results indicate that the selectivity of the H2/O2 plasma 

can be controlled to synthesize high purity and high concentration H2O2 directly 

without any purification or concentration operations. More importantly, through 

either dilution of 90 wt% H2O2 solution or adjusting the input energy density, the 

concentration of H2O2 can be controlled to a desired value for many applications, i.e., 

paper manufacturing, environment protection, metallurgy, chemical synthesis, 

medical treatment, electronic industry, as well as aerospace, ranging from dilute to 

concentrated H2O2 solutions.  

4.2 Diagnostic of the H2/O2 Plasma 

  As mentioned previously, low reaction selectivity is a key problem of plasma 

chemical processes. The improvement of H2O2 selectivity is also an important issue 

in the field of H2O2 synthesis. Therefore, the control of H2O2 selectivity by adjusting 

SEI, as mentioned above, should be paid enormous attention as it may not only shed 
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new light on the methodology for the control of plasma chemical reactions, but it 

may also be significant in H2O2 synthesis. In order to understand why the H2O2 

selectivity can be controlled by SEI, on-site diagnostic studies and theoretical 

calculation were carried out at different SEI.   

  The discharge behavior of the H2/O2 plasma has been recorded by a camera. The 

optical images (Figure 4) show that all of the H2/O2 plasma exhibited similar 

diffusive and uninterrupted discharge behavior throughout the discharge zone, just 

like the behavior of the Townsend discharge. That is, the SEI has little influence on 

the discharge behavior. However, Figure 4 shows that the luminance of the H2/O2 

plasma was enhanced with the increase of SEI, which indicates that there may be 

more active and electronic excited species generated in the H2/O2 plasma in the case 

of higher SEI.  

  On-site optical emission spectroscopy (OES) has been used to diagnose the active 

and electronic excited species formed in the H2/O2 plasma. As shown in Figure 5a, 

the OES of the H2/O2 plasma was quite complex; two main emission bands in the 

range of 380-550 nm and 580-650 nm, as well as an intensive emission line at 656.3 

nm, were detected. Furthermore, the local enlargement (Figure 5b) shows that two 

weak emission lines at 777.5 and 844.7 nm were also detected. The above detected 

five emissions correspond to the decay of H2 molecule (a
3
∑g

+
 → b

3
∑u

+ 
and d

3
∏u

+
 

→ a
3
∑g

+
), hydrogen atom (3d

2
D → 2p

2
P

0
) and oxygen atom (3s

5
S

0
 → 3p

5
P and 

3s
3
S

0
 → 3p

3
P), respectively. It means that both H2 and O2 were dissociated in the 

H2/O2 plasma. Figures 5a and 5c show that the emission intensities of the excited H2, 
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H and O increase with the increasing of SEI, which indicates more O2 and H2 have 

been activated into active species (H2*, O2*, H and O) at higher SEI. 

Correspondingly, the concentration of active species (H2*, O2*, H and O) also 

increased with SEI. The active oxygen species (O and O2*) can result in the 

formation of H2O through a chain branching reaction path (R3-R5) [45]. This is the 

reason why the H2O2 selectivity decreased with the increasing of SEI.  

  In atmospheric plasma chemical process, the electron density and average electron 

energy are the two critical parameters, which usually determine the distribution of 

active species and subsequently determine the final reaction results. However, they 

are difficult to measure accurately through experimental methodologies (e.g. 

Langmuir Probe) because of high deviation caused by high gas density. Fortunately, 

the variation of the electron density and average electron energy are commonly 

synchronous with the discharge current and breakdown voltage, respectively. 

Therefore, an on-site digital phosphor oscilloscope has been used to measure the 

discharge current and breakdown voltage of the H2/O2 plasma with different SEI 

[47]. The SEI was modulated by varying the applied voltage. However, as shown in 

Table 5, with increasing SEI, the breakdown voltage (Ug) was nearly stable. That is, 

the electric field intensity in the discharge region was nearly constant with increasing 

SEI. So, it can be speculated that the average electron energy in the H2/O2 plasma 

also undergoes little change with the variation of SEI. However, the discharge 

current increased gradually with an increase in SEI (Table 5), which indicates that 

the electron density increased gradually with increasing SEI. 
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4.3 Modeling Results of the H2/O2 Plasma 

  In order to corroborate the above experimental results, theoretical simulations on 

the H2/O2 plasma with different SEI have been calculated using the software 

ZDplaskin [50, 51]. In the modeling, through solving the Boltzmann Equation F7, 

the average electron energy and electron density can be calculated. Figure 6 shows 

that, with the increase of SEI from 2.08 to 7.09 J/ml, the average electron energy was 

nearly constant, but the electron density increased gradually from 1.54×10
13

 to 

4.54×10
14 

cm
-3

. These modeling results (Figure 6) are consistent with the 

experimental speculation on electron density and average electron energy (Table 5).  

  The above theoretical simulation results further indicate that the control of H2O2 

selectivity was achieved through adjusting the electron density of the H2/O2 plasma. 

In plasma chemistry, higher electron density means higher probability of inelastic 

collisions between an electron and a reactant molecule. At the condition of low SEI, 

the electron density is low. This means the probability of inelastic collision between 

the electron and reactant molecule (O2 and H2) is also low, which leads to most of O2 

molecules remaining in the ground state. Conversely, at a higher SEI, more O2 

molecules will be activated into active oxygen species (O and O2*). The active 

oxygen species (O and O2*) can result in the formation of H2O by-product through a 

chain branching reaction path (R3-R5); however, the ground state oxygen molecule 

mostly leads to the production of H2O2 through a chain termination reaction path 

(R1-R2) [45]. Therefore, low SEI, i.e., low electron density H2/O2 plasma, can 

synthesize H2O2 with high selectivity. However, low electron density will also result 
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in low O2 conversion and low H2O2 yield.  

4.4 Method for Future Improvement  

  The above results have demonstrated that, in order to get high H2O2 selectivity and 

high H2O2 yield simultaneously, the electron density of H2/O2 plasma must be 

increased, but the activation of O2 must be avoided. The inelastic collision cross 

sections of H2 [52-57] and O2 [58-63] molecules with an electron, summarized in 

Figure 7 (the detail information is shown in supporting information, Figure S1), are 

vital for achieving this goal. In plasma, higher collision cross sections have higher 

probability to induce inelastic collision between particles and electrons, which 

results in activation of the reactant molecule. Figure 7 shows that, when the electron 

energy is in the range of 0~10 eV, the electrons can activate the H2 molecule; 

however, only the electrons with energy in the range of 0.5~1 or 1.5~10 eV can 

activate the O2 molecule. In other words, the electrons with energy between 1~1.5 

eV can activate H2 but cannot activate O2. This result suggests that further study into 

the H2/O2 plasma reaction for the synthesis of H2O2 should be focused on controlling 

the average electron energy in the range of 1~1.5 eV. However, because the electron 

energy distribution in plasma is statistical (usually Maxwell distribution), the 

production of electrons with energy outside the range of 1~1.5 eV is inevitable. So, 

control of average electron energy may be beneficial for the enhancement of H2O2 

selectivity but complete inhibition of H2O formation is not possible. In other words, 

when the average electron energy is controlled in the range of 1~1.5 eV, the chain 

branching reaction path (R3-R5) to form H2O by-product can be inhibited partially, 
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thus higher H2O2 selectivity and higher H2O2 yield can be obtained simultaneously at 

higher SEI.  

5 Conclusions  

  In summary, the selectivity of H2O2 in the H2/O2 plasma reaction process can be 

effectively controlled by controlling the SEI: The higher the SEI, the lower the H2O2 

selectivity. Plasma diagnostics and theoretical calculation results indicate that low 

electron density H2/O2 plasma is the critical factor for obtaining high selectivity. 

When the SEI was fixed at 2.08 J/ml, 500 hours continuous operation was carried out 

with high stability. The H2O2 selectivity reached 91 % and the H2O2 product 

obtained was high purity (electronic grade), producing concentrated H2O2 solution 

(90 wt%). However, low SEI leads to low O2 conversion and low H2O2 yield. In the 

future, if the average electron energy of H2/O2 plasma could be controlled in the 

range of 1~1.5 eV, higher H2O2 selectivity and higher H2O2 yield could be achieved 

simultaneously at higher SEI.  

  These results provide the idea that, by combining a H2/O2 plasma experimental 

setup with a water electrolysis device, a H2O2 generator can be designed to produce 

high purity H2O2 directly from H2O. Furthermore, only consuming electrical energy, 

this H2O2 generator can synthesize H2O2 with a desired concentration ranging from 

dilute to concentrated H2O2 solution, which has broad applications, i.e., paper 

manufacturing, environment protection, metallurgy, chemical synthesis, medical 

treatment, electronic industry, as well as aerospace. However, more studies need to 

be done to improve H2O2 productivity and decrease the energy consumption.  
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  In addition, through analyzing the collision cross section of reactants with an 

electron and adjusting the electron energy distribution, the selectivity of some 

complex plasma reaction systems (various reactants and products) could be 

controlled in theory and practical applications.  
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Notation 

SEI = specific energy input  

NTP = non-thermal plasma  

H2O2 = hydrogen peroxide  

AQ = anthraquinone 

DSHP = direct synthesis of hydrogen peroxide 

DDBD = double dielectric barrier discharge 

DBD = dielectric barrier discharge 

HVE = high voltage electrode 

AC = alternating current 

GE = grounding electrode 

Cd = dielectrics capacitor 

Ua = applied voltage 

Uc = external capacitor voltage  
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Ud = dielectric voltage  

Ug = gas voltage = breakdown voltage 

BE = boltzmann equation 

EEDF = electron energy distribution function 

OES = optical emission spectroscopy 
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Figure Captions 

Fig. 1 – Schematic diagram of experimental setup for direct synthesis of H2O2 

through H2/O2 plasma 

 

Fig. 2 – Schematic structure of the DDBD reactor  

 

Fig. 3 –  O2 conversion and H2O2 product solution volume VS. reaction time during 

the 500 h continuous operation. The left inset is the discharge photo and the right 

inset is the photo of the H2O2 production. (2.08 J/ml SEI, 12 kHz discharge 

frequency, 1 atm, 10 ml/min O2, 170 ml/min H2)  

 

Fig. 4 – Optical images of the H2/O2 DBD plasma at different specific energy input. 

(0.5 s exposure time, 12 kHz discharge frequency, 1 atm, 10 ml/min O2, 170 ml/min 

H2). 

 

Fig. 5 – a) OES of the H2/O2 DBD plasma with different specific energy input; b) the 

local enlargement of a); c) OES intensity of H and O atomic lines in the H2/O2 DBD 

plasma with different specific energy input. (300 g/mm grating, 0.5 s exposure time, 

12 kHz discharge frequency, 1 atm, 10 ml/min O2, 170 ml/min H2) 

 

Fig. 6 – Electron density and average electron energy of H2/O2 plasma as a function 

of specific energy input simulated using ZDplaskin software.  
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Fig. 7 – Inelastic collision cross sections of H2 and O2 molecule with electron in the 

energy range of 0~10 eV.   

 

Table 1 – Summary of all ground-state species included in the model. 

 

Table 2 – H2O2 synthesis with varying specific energy input in a DDBD reactor.  

 

Table 3 – Impurity content of the H2O2 solution obtained in the 500 h continuous 

operation and the electronic grade H2O2 of SEMI Standards ( Unite: ppb). 

 

Table 4 – Requirements for electronic grade hydrogen peroxide according to SEMI 

Standards (SEMI Document C30-1110, 2010). 

 

Table 5 – Electrical parameters of the H2/O2 DBD plasma with different specific 

energy input. 


