116 research outputs found

    Coastal Reservoir Strategy and Its Applications

    Get PDF
    While the world\u27s population tripled in the 20th century, the use of renewable water resources has grown six-fold [1]. It is estimated that the world population will enlarge by another 40 to 50 % in the following fifty years. The demand for water will be increasing resulted by the population growth combined with industrialization and urbanization, which will have serious consequences on the environment. According to WHO/UNICEF Joint Monitoring Programme (JMP) (2012 Update), 780 million people lack access to an improved water source; approximately one in nine people [2]. Water stress causes deterioration of fresh water resources in terms of quantity (aquifer over-exploitation, dry rivers, etc.) and quality (eutrophication, organic matter pollution, saline intrusion, etc.). In the Developing World, women and children walk miles to get water. The UN estimates that the average is 40 pounds of water carried 4 miles (18 kg-6 km). This takes hours, people can’t attend school/ work, deforms the spine and can leave women vulnerable to assault [3]. Figure 1 showed the state of water shortages based on synthetic evaluation of water management using for agriculture in 2007

    InvVis: Large-Scale Data Embedding for Invertible Visualization

    Full text link
    We present InvVis, a new approach for invertible visualization, which is reconstructing or further modifying a visualization from an image. InvVis allows the embedding of a significant amount of data, such as chart data, chart information, source code, etc., into visualization images. The encoded image is perceptually indistinguishable from the original one. We propose a new method to efficiently express chart data in the form of images, enabling large-capacity data embedding. We also outline a model based on the invertible neural network to achieve high-quality data concealing and revealing. We explore and implement a variety of application scenarios of InvVis. Additionally, we conduct a series of evaluation experiments to assess our method from multiple perspectives, including data embedding quality, data restoration accuracy, data encoding capacity, etc. The result of our experiments demonstrates the great potential of InvVis in invertible visualization.Comment: IEEE VIS 202

    Experimental study on the validity of flow region division

    Get PDF
    Einstein first proposed that a river flow can be divided into three parts, corresponding to the banks and its bed, respectively, but he did not explain why the flow is dividable and how to divide the flow, in other words the flow division is only a mathematical treatment to simplify his analysis. Since Einstein\u27s proposition there have been many researches and debates on this topic, many division lines have been proposed, but there is no specially designed experimental research to verify the physical existence of division lines, and these division lines have not been tested against the experimental data. For this purpose, an experiment in a rectangular open channel was conducted to measure whether zero-shear stress exists in an open channel except its existence on the free surface. The measured results reveal that zero-shear stress indeed exists below the free surface, and some proposed equations of division line agree well with the profile of the measured zero-shear line, thus it is clarified that Einstein\u27s hypothesis is not only useful to simplify the mathematical treatment, but also it has the physical basis, i.e., zero-shear division line. As far as the authors know, in the literature, this is the first experimental proof that the division lines indeed exist in channel flows

    Synaptic Plasticity, a Prominent Contributor to the Anxiety in Fragile X Syndrome

    Get PDF
    Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by expansion of the CGG trinucleotide repeat affecting the fmr1 gene on X chromosome, resulting in silence of the fmr1 gene and failed expression of FMRP. Patients with FXS suffer from cognitive impairment, sensory integration deficits, learning disability, anxiety, autistic traits, and so forth. Specifically, the morbidity of anxiety in FXS individuals remains high from childhood to adulthood. By and large, it is common that the change of brain plasticity plays a key role in the progression of disease. But for now, most studies excessively emphasized the one-sided factor on the change of synaptic plasticity participating in the generation of anxiety during the development of FXS. Here we proposed an integrated concept to acquire better recognition about the details of this process

    MDA5 against enteric viruses through induction of interferon-like response partially via the JAK-STAT cascade

    Get PDF
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade

    The interplay between host innate immunity and hepatitis E virus

    Get PDF
    Hepatitis E virus (HEV) infection represents an emerging global health issue, whereas the clinical outcomes vary dramatically among different populations. The host innate immune system provides a first-line defense against the infection, but dysregulation may partially contribute to severe pathogenesis. A growing body of evidence has indicated the active response of the host innate immunity to HEV infection both in experimental models and in patients. In turn, HEV has developed sophisticated strategies to counteract the host immune system. In this review, we aim to comprehensively decipher the processes of pathogen recognition, interferon, and inflammatory responses, and the involvement of innate immune cells in HEV infection. We further discuss their implications in understanding the pathogenic mechanisms and developing antiviral therapies

    Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections

    Get PDF
    Hepatitis virus infections affect a large proportion of the global population. The host responds rapidly to viral infection by orchestrating a variety of cellular machineries, in particular, the mitochondrial compartment. Mitochondria actively regulate viral infections through modulation of the cellular innate immunity and reprogramming of metabolism. In turn, hepatitis viruses are able to modulate the morphodynamics and functions of mitochondria, but the mode of actions are distinct with respect to different types of hepatitis viruses. The resulting mutual interactions between viruses and mitochondria partially explain the clinical presentation of viral hepatitis, influence the response to antiviral treatment, and offer rational avenues for novel therapy. In this review, we aim to consider in depth the multifaceted interactions of mitochondria with hepatitis virus infections and emphasize the implications for understanding pathogenesis and advancing therapeutic development

    Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light

    Get PDF
    Algae as an abundant natural biomass, more attention has been paid to explore its potential application in environmental pollutants treatment. This work prepared the algae-TiO2/Ag bionano hybrid material by loading algae cells on the ultrafine TiO2/Ag chitosan hybrid nanofiber mat. For the first time, the synergistic photocatalytic effect of fresh algae and TiO2/Ag nanomaterial was investigated by removal of Cr(VI). The addition of algae significantly improved the photo-removal of Cr(VI) in the system with TiO2/Ag hybrid nanomaterial under visible light irradiation. Meanwhile, the photocatalytic mechanism was studied. The photogenerated reactive oxygen species were quantified and the addition of algae apparently decreased the yields of •OH to 31.0 µM, while improved the yields of 1O2 and O2•− in the reaction system with TiO2/Ag hybrid nanofiber mats. The change of superoxide dismutase activity and malondialdehyde content in algae indicated that TiO2/Ag could impose oxidative stress and cause lipid peroxidation in algae cells. During the course of irradiation, algae released substances could act as scavenger for holes, thus inhibited the recombination of hole/electron and enhanced the photocatalytic reduction of Cr(VI) by electrons on TiO2 surface. Algae was simultaneously photodegraded in the system and the resulting O2•−, organic free radicals could promote the reduction of Cr(VI). This functional hybrid nanofiber mat was easily recovered and maintained a great photocatalytic activity on the five successive cycles. This algae-photocatalyst hybrid material has promising applications potential in heavy metal removal and organic pollutants treatment
    • …
    corecore