522 research outputs found

    State sampling dependence of the Hopfield network inference

    Get PDF
    The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations. We present the system in the glassy phase with low temperature and high memory load. We find that the inference error is very sensitive to the form of state sampling. When a single state is sampled to compute magnetizations and correlations, the inference error is almost indistinguishable irrespective of the sampled state. However, the error can be greatly reduced if the data is collected with state transitions. Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references adde

    Looking into the matter of light-quark hadrons

    Full text link
    In tackling QCD, a constructive feedback between theory and extant and forthcoming experiments is necessary in order to place constraints on the infrared behaviour of QCD's \beta-function, a key nonperturbative quantity in hadron physics. The Dyson-Schwinger equations provide a tool with which to work toward this goal. They connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence provide a means of elucidating the material content of real-world QCD. This contribution illustrates these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the spectra of mesons and baryons, and the critical role played by hadron-hadron interactions in producing these spectra.Comment: 11 pages, 7 figures. Contribution to the Proceedings of "Applications of light-cone coordinates to highly relativistic systems - LIGHTCONE 2011," 23-27 May, 2011, Dallas. The Proceedings will be published in Few Body System

    Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation

    Full text link
    We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only input is a well-established and phenomenologically successful ansatz for the nonperturbative quark-gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements and determines the momentum dependence of the form factors. Our result for the axial charge underestimates the experimental value by 20-25% which might be a signal of missing pion-cloud contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl

    Observation of Two New N* Peaks in J/psi -> ppinˉp pi^- \bar n and pˉπ+n\bar p\pi^+n Decays

    Full text link
    The πN\pi N system in decays of J/ψNˉNπJ/\psi\to\bar NN\pi is limited to be isospin 1/2 by isospin conservation. This provides a big advantage in studying NπNN^*\to \pi N compared with πN\pi N and γN\gamma N experiments which mix isospin 1/2 and 3/2 for the πN\pi N system. Using 58 million J/ψJ/\psi decays collected with the Beijing Electron Positron Collider, more than 100 thousand J/ψpπnˉ+c.c.J/\psi \to p \pi^- \bar n + c.c. events are obtained. Besides two well known NN^* peaks at 1500 MeV and 1670 MeV, there are two new, clear NN^* peaks in the pπp\pi invariant mass spectrum around 1360 MeV and 2030 MeV. They are the first direct observation of the N(1440)N^*(1440) peak and a long-sought "missing" NN^* peak above 2 GeV in the πN\pi N invariant mass spectrum. A simple Breit-Wigner fit gives the mass and width for the N(1440)N^*(1440) peak as 1358±6±161358\pm 6 \pm 16 MeV and 179±26±50179\pm 26\pm 50 MeV, and for the new NN^* peak above 2 GeV as 2068±340+152068\pm 3^{+15}_{-40} MeV and 165±14±40165\pm 14\pm 40 MeV, respectively

    Collective perspective on advances in Dyson-Schwinger Equation QCD

    Full text link
    We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing: aspects of confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small- to large-Q^2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.Comment: 56 pages. Summary of lectures delivered by the authors at the "Workshop on AdS/CFT and Novel Approaches to Hadron and Heavy Ion Physics," 2010-10-11 to 2010-12-03, hosted by the Kavli Institute for Theoretical Physics, China, at the Chinese Academy of Science

    Minibeam radiation therapy enhanced tumor delivery of PEGylated liposomal doxorubicin in a triple-negative breast cancer mouse model

    Get PDF
    Background: Minibeam radiation therapy is an experimental radiation therapy utilizing an array of parallel submillimeter planar X-ray beams. In preclinical studies, minibeam radiation therapy has been shown to eradicate tumors and cause significantly less damage to normal tissue compared to equivalent radiation doses delivered by conventional broadbeam radiation therapy, where radiation dose is uniformly distributed. Methods: Expanding on prior studies that suggested minibeam radiation therapy increased perfusion in tumors, we compared a single fraction of minibeam radiation therapy (peak dose:valley dose of 28 Gy:2.1 Gy and 100 Gy:7.5 Gy) and broadbeam radiation therapy (7 Gy) in their ability to enhance tumor delivery of PEGylated liposomal doxorubicin and alter the tumor microenvironment in a murine tumor model. Plasma and tumor pharmacokinetic studies of PEGylated liposomal doxorubicin and tumor microenvironment profiling were performed in a genetically engineered mouse model of claudin-low triple-negative breast cancer (T11). Results: Minibeam radiation therapy (28 Gy) and broadbeam radiation therapy (7 Gy) increased PEGylated liposomal doxorubicin tumor delivery by 7.1-fold and 2.7-fold, respectively, compared to PEGylated liposomal doxorubicin alone, without altering the plasma disposition. The enhanced tumor delivery of PEGylated liposomal doxorubicin by minibeam radiation therapy is consistent after repeated dosing, is associated with changes in tumor macrophages but not collagen or angiogenesis, and nontoxic to local tissues. Our study indicated that the minibeam radiation therapy’s ability to enhance the drug delivery decreases from 28 to 100 Gy peak dose. Discussion: Our studies suggest that low-dose minibeam radiation therapy is a safe and effective method to significantly enhance the tumor delivery of nanoparticle agents

    Direct Measurement of the Pseudoscalar Decay Constant fD+

    Full text link
    The absolute branching fraction of D+μ+νD^+ \to \mu^+ \nu has been directly measured by an analysis of a data sample of about 33 pb1{\rm pb^{-1}} collected around s=3.773\sqrt{s}=3.773 GeV with the BES-II at the BEPC. At these energies, DD^- meson is produced in pair as e+eD+De^+e^-\to D^{+} D^{-}. A total of 5321±149±1605321 \pm 149 \pm 160 DD^- mesons are reconstructed from this data set. In the recoil side of the tagged DD^- mesons, 2.67±1.742.67\pm1.74 purely leptonic decay events of D+μ+νD^+ \to \mu^+ \nu are observed. This yields a branching fraction of BF(D+μ+νμ)=(0.1220.053+0.111±0.010)BF(D^+ \to \mu^+ \nu_{\mu}) = (0.122^{+0.111}_{-0.053}\pm 0.010)%, and a corresponding pseudoscalar decay constant fD+=(371119+129±25)f_{D^+}=(371^{+129}_{-119}\pm 25) MeV.Comment: 7 pages, 8 figures, Submitted to Physics Letters B in October, 200

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
    corecore