13 research outputs found

    The positive effect of selective prostaglandin E2 receptor EP2 and EP4 blockade on cystogenesis in vitro is counteracted by increased kidney inflammation in vivo

    Get PDF
    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major cause of end-stage kidney disease in man. The central role of cyclic adenosine monophosphate (cAMP) in ADPKD pathogenesis has been confirmed by numerous studies including positive clinical trial data. Here, we investigated the potential role of another major regulator of renal cAMP, prostaglandin E2 (PGE2), in modifying disease progression in ADPKD models using selective receptor modulators to all four PGE2 receptor subtypes (EP1-4). In 3D-culture model systems utilizing dog (MDCK) and patient-derived (UCL93, OX161-C1) kidney cell lines, PGE2 strikingly promoted cystogenesis and inhibited tubulogenesis by stimulating proliferation while reducing apoptosis. The effect of PGE2 on tubulogenesis and cystogenesis in 3D-culture was mimicked or abolished by selective EP2 and EP4 agonists or antagonists but not those specific to EP1 or EP3. In a Pkd1 mouse model (Pkd1nl/nl), kidney PGE2 and COX-2 expression were increased by two-fold at the peak of disease (week four). However, Pkd1nl/nl mice treated with selective EP2 (PF-04418948) or EP4 (ONO-AE3-208) antagonists from birth for three weeks had more severe cystic disease and fibrosis associated with increased cell proliferation and macrophage infiltration. A similar effect was observed for the EP4 antagonist ONO-AE3-208 in a second Pkd1 model (Pax8rtTA-TetO-Cre-Pkd1f/f). Thus, despite the positive effects of slowing cyst growth in vitro, the more complex effects of inhibiting EP2 or EP4 in vivo resulted in a worse outcome, possibly related to unexpected pro-inflammatory effects

    Global microRNA profiling in human urinary exosomes reveals novel disease biomarkers and cellular pathways for Autosomal Dominant Polycystic Kidney Disease

    Get PDF
    MicroRNAs (miRNAs) play an important role in regulating gene expression in health and disease but their role in modifying disease expression in Autosomal Dominant Polycystic Kidney Disease (ADPKD) remains uncertain. Here, we profiled human urinary exosome miRNA by global small RNA-sequencing in an initial discovery cohort of seven patients with ADPKD with early disease (eGFR over 60ml/min/1.73m2), nine with late disease (eGFR under 60ml/min/1.73m2), and compared their differential expression with six age and sex matched healthy controls. Two kidney-enriched candidate miRNA families were identified (miR-192/miR-194-2 and miR-30) and selected for confirmatory testing in a 60 patient validation cohort by quantitative polymerase chain reaction. We confirmed that miR-192-5p, miR-194- 5p, miR-30a-5p, miR-30d-5p and miR-30e-5p were significantly downregulated in patient urine exosomes, in murine Pkd1 cystic kidneys and in human PKD1 cystic kidney tissue. All five miRNAs showed significant correlations with baseline eGFR and ultrasound-determined mean kidney length and improved the diagnostic performance (area under the curve) of mean kidney length for the rate of disease progression. Finally, inverse correlations of these two miRNA families with increased expression in their predicted target genes in patient PKD1 cystic tissue identified dysregulated pathways and transcriptional networks including novel interactions between miR-194-5p and two potentially relevant candidate genes, PIK3R1 and ANO1. Thus, our results identify a subset of urinary exosomal miRNAs that could serve as novel biomarkers of disease progression and suggest new therapeutic targets in ADPKD

    Advances in Agrobacterium-mediated plant transformation with enphasys on soybean

    Full text link

    Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice

    No full text
    Metabolic reprogramming is a potential treatment strategy for autosomal dominant polycystic kidney disease (ADPKD). Metformin has been shown to inhibit the early stages of cyst formation in animal models. However, metformin can lead to lactic acidosis in diabetic patients with advanced chronic kidney disease, and its efficacy in ADPKD is still not fully understood. Here, we investigated the effect of metformin in an established hypomorphic mouse model of PKD that presents stable and heritable knockdown of Pkd1. The Pkd1 miRNA transgenic mice of both genders were randomized to receive metformin or saline injections. Metformin was administrated through daily intraperitoneal injection from postnatal day 35 for 4 weeks. Unexpectedly, metformin treatment at a concentration of 150 mg/kg increased disease severity, including kidney-to-body weight ratio, cystic index and plasma BUN levels, and was associated with increased renal tubular cell proliferation and plasma lactate levels. Functional enrichment analysis for cDNA microarrays from kidney samples revealed significant enrichment of several pro-proliferative pathways including ÎČ-catenin, hypoxia-inducible factor-1α, protein kinase Cα and Notch signaling pathways in the metformin-treated mutant mice. The plasma metformin concentrations were still within the recommended therapeutic range for type 2 diabetic patients. Short-term metformin treatment in a second Pkd1 hypomorphic model (Pkd1RC/RC) was however neutral. These results demonstrate that metformin may exacerbate late-stage cyst growth associated with the activation of lactate-related signaling pathways in Pkd1 deficiency. Our findings indicate that using metformin in the later stage of ADPKD might accelerate disease progression and call for the cautious use of metformin in these patients
    corecore