113,783 research outputs found

    Substructure coupling for dynamic analysis and testing

    Get PDF
    Fixed interface and free interface methods of substructure coupling for dynamic analysis are discussed. Three methods for reducing the number of coordinates required by fixed interface methods are introduced. Matrix ordinary differential equations are employed to improve accuracy in free interface substructure coupling methods

    A review of substructure coupling methods for dynamic analysis

    Get PDF
    The state of the art is assessed in substructure coupling for dynamic analysis. A general formulation, which permits all previously described methods to be characterized by a few constituent matrices, is developed. Limited results comparing the accuracy of various methods are presented

    On numerical integration and computer implementation of viscoplastic models

    Get PDF
    Due to the stringent design requirement for aerospace or nuclear structural components, considerable research interests have been generated on the development of constitutive models for representing the inelastic behavior of metals at elevated temperatures. In particular, a class of unified theories (or viscoplastic constitutive models) have been proposed to simulate material responses such as cyclic plasticity, rate sensitivity, creep deformations, strain hardening or softening, etc. This approach differs from the conventional creep and plasticity theory in that both the creep and plastic deformations are treated as unified time-dependent quantities. Although most of viscoplastic models give better material behavior representation, the associated constitutive differential equations have stiff regimes which present numerical difficulties in time-dependent analysis. In this connection, appropriate solution algorithm must be developed for viscoplastic analysis via finite element method

    Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth

    Get PDF
    The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases

    Tethered balloon-based measurements of meteorological variables and aerosols

    Get PDF
    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described

    The study of parameter optimization in vehicle-borne tracking systems Final technical report

    Get PDF
    Data smoothing technique for parameter optimization in free flight orbit vehicle-borne tracking system

    A finite element stress analysis of spur gears including fillet radii and rim thickness effects

    Get PDF
    Spur gear stress analysis results are presented for a variety of loading conditions, support conditions, fillet radii, and rim thickness. These results are obtained using the SAP IV finite-element code. The maximum stresses, occurring at the root surface, substantially increase with decreasing rim thickness for partially supported rims (that is, with loose-fitting hubs). For fully supported rims (that is, with tight-fitting hubs), the root surface stresses slightly decrease with decreasing rim thickness. The fillet radius is found to have a significant effect upon the maximum stresses at the root surface. These stresses increase with increasing fillet radius. The fillet radius has little effect upon the internal root section stresses

    Hawking radiation of unparticles

    Full text link
    Unparticle degrees of freedom, no matter how weakly coupled to the standard model particles, must affect the evolution of a black hole, which thermally decays into all available degrees of freedom. We develop a method for calculating the grey-body factors for scalar unparticles for 3+1 and higher dimensional black holes. We find that the power emitted in unparticles may be quite different from the power emitted in ordinary particles. Depending on the parameters in the model, unparticles may become the dominant channel. This is of special interest for small primordial black holes and also in models with low scale quantum gravity where the experimental signature may significantly be affected. We also discuss the sensitivity of the results on the (currently unknown) unparticle normalization.Comment: Calculations for different normalization of unparticles included, discussion expanded, version published in Phys. Rev.
    corecore