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Abstract éé’l 68

The roles of natural convection in the melt and the shape of the melt/solid
interface on radial dopant segregation are analyzed for a prototype of vertical
Bridgman crystal growth system by finite element methods that solve simultaneously
for the velocity field in the melt, the shape of the sclidification isotherm,
and the temperature distribution in both phases. Results are presented for
crystal and melt with thermophysical properties similar to those of gallium-
doped germanfum in Bridgman configurations with melt below (thermally destabi-
lizingg and above (stabilizing) the crystal. Steady axisymmetric flows are
classified according to Rayleigh number as either being nearly the crowth
velocity, having a weak cellular structure or having large amplitude cellular
convection. The flows in the two Bridoman configurations are driven by different
temperature gradients and are in opposite directioas. Finite element calculations
for the transport of a dilute dopant by these flow fields reveal radial segrega-
tion levels as large as sixty percent of the mean concentration., Segregation
{s found most severe at an intermediate value of Rayleiah number above which
the dopant distribution along the interface levels as the intensity of the
flow increases. The complexity of the concentration field coupled with
calculations of effective segregation coefficient show the coarseness of
the usual diffusion-layer approximation for describing the depant distribution
adjacent to the crystal. The length of the gradient zone and the ratio of
thermal conductivities between melt and crystal are identified as additional
critical parameters for setting the degree of radial segregation. The predic-
tions of melt/solid interface shape and axial and radial dopant segregation
will form the basis for the first comparison between detailed fluid mechanical
models of melt crystai growth and actual experiments.
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1. INTRODUCTION

The compositional uniformity of dopants and impurities in semi-
conductor crystals grown from the melt depends strongly on the pattern
and intensity of flow in the melt and on the shape of the melt/solid
interface. In processes such as the Czochralski and floating zone
metheds for producing silicon and the vertical Bridaman configuration
studied here, the unequal partitioning of dopant between melt and crystal
during solidification causes a concentration gradient perpencdicular to the
melt/solid interface. When the melt/solid interface is planar and the melt
is quiescent except for motion caused by crystal growth the concentration
field decays exponentially with distance into the melt. Curvature of the
solidification interface and convection in the melt both change the concentra-
tion distribution along the interface and alter the dopant level in the
crystal.

The effect of convection on segregation in the growth direction was
pointed out by the Burton et al. analysis [1-2] of the effect of crystal
rotation on mass transfer. When the crystal diameter is large and the
velocity field 1s similar along the radius of the melt/solid interface
convection only alters the concentration field perpendicular to the inter-
face. Burtin et al. anmalyzed this case and developed an expression for an
effective segregation coefficient ard introduced the notion of an axial
"boundary layer" thickness for diffusion controlled mass transfer. Others
[4-8] have applied the idea of a uniform diffusion-layer or stagnant-film

that is masking a growing crystal from a well mixed bulk and have determined



so-called boundary-layer (more appropriately called diffusion-layer) thick-
nesses without any picture for the fluid motion in the melt. Other than
Burtin, Prim and Slichter's original analysis of rotating flows, few papérs
dealing with melt crystal growth [9-10] have addressed the exact coupling
between the fluid flow and mass transfer in a consigtent way.

In many growth configurations, the concept of a uniform diffusion-layer
yields an over-simplified view of the role of convection in dopant segrecation
-[11]. When the flow is laminar and cellular, as is the case for many
small-scale growth systems and for reduced gravity experiments, convectivz
mass transfer is uneven along the surface of the crystal and significant
radial segregation results. The coupling between moderate convection and
radial dopant segregation has been thoroughly analyzed for the rotationally-
driven flows 1n small-scale floating zones [10, 12, 13] and has been demonstrated
for buoyancy-driven convection under microgravity conditions [14]. All
these studies were of model crystal growth systems with planar solidifica-
tion interfaces.

Coriell and Sekerka ([15]; also see ref. 16) have demonstrated that sig-
nificant radial segregation occurs in systems without convection tangent to the
crystal surface when the radius of curvature of this interface is the same
or less than thc length scale of the concentration gradient adjacent to the
interface. Curvature-induced segrecation has been shown to be an important
contribution to dopant inhomogeneities in capillary growth systems [17-19]
and may be important in other small-scale crystal growth experiments in
which convection in the melt has been suppressed.

The purpose of this paper is to present theoretical results from



computer-aided analysis of the interactions of natural convection and melt/
solid interface shape in setting dopant distributions in crystals grown in

a vertical Bridgman system. The prototype growth system considered here

is shown 1n Figure 1 and consists of crystal and melt contained in a cylin-
drical ampoule of radius R and length L pulled slowly through a vertically
aligned furnace with hot and cold isothermal zones., The isothermal zones

are separated by an adiabatic region designed to promote steep axial tempera-
ture gradients and to maintain a flat solidification interface. Heat transfer
in the Bridgman system without convection is well understood. A host of

one- and two-dimensional heat transfer models [20-27] have been used to analyze
the magnitudes of axial and radial temperature gradients in the gradient zone
and the shape of the melt/solid interface. MNo previous studies have con-
sidered the effect of convection on melt/solid interface shape.

Convection in the Bridgman system is driven by buoyancy differences
induced by radial and axial temperature gradients and may be either laminar,
perfectly time-periodic or turbulent, depending on the magnitude of the
temperature gradient, the size of the ampoule and its orientation with
re:. ¢t to the direction of gravity. When the melt is positioned below the
crystal the axial temeperature gradient places the hottest (and less dense)
melt on the bottom of the ampoule and is destabilizing. Kim et al. [5]
used dopant striations in gallium-doped germanium crystals to identify
melt lengths at which each of the three forms of convection were present.
Others [8, 28] have oriented the melt above the crystal in order to produce
a stably-stratified axfal density gradient. Convection still exists in this

configuration; radial temperature gradients introduced by changes in lateral
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heat transfer conditions cause lateral density variations that can drive
laminar and even turbulent convection, as demonstrated in [29].

The adverse effects of large amplitude convection, especially time-
dependent flows, on dopant segregation in the crystal are so severe
that solidificatfon experiments have been performed in outer space [30, 31]
to test the feasibility of crystal growth in a reduced gravity environment.
Even these experiments are not convectionless because time-averaged accelera-
tions with magnitude as large as 10'4 the gravitational acceleration on earth
still exist on board most spacecraft. As discussed below, the differences
in space experiments may cause larger con:entration varia%ions than seen
in crystals grown on earth,:

The calculations described here are of.the axisymmetric steady :state
velocity, temperature, and concentration fields and melt/solid interface
shapes for the model of the vertical Bridgman system describec in Section 2.
The mathematical free-boundary problem that describes these variables
is solved by a newly developed [31, 32] finite-element/Newton technique
that computes simultaneously the shape of the solidification interface,
the velocity and pressure fields in the melt and the temperature distri-
bution in both melt and crystal. The increased efficiency of this algorithm
over any other developed before [31] makes possible the wide ranse of
calculations presented here. Also, as described in [32], the use of
Newton's method for solution of the full set of nonlinear algebraic equa-
tions makes available powerful algorithms for detecting either
the loss of solution or the existence of multiple solutions

to the free-boundary problem represented by the finite-element equations.



Flow fields calculated with the finite-element/Newton algerithm are used
in a separate calculation of the distribution of a dilute dopant within
the melt and crystal. All the numerical methods are presented in detail

elsewhere and so are only sketched in Section 3.

Flow fields and concentration distributions in the vertically stabilized
(me1t on top) configuration are presented in Section 4 alona wit. sensitivity
analysis for the length of the melt, the size of the gradient zone and the
ratio of thermal conductivities between melt and solid., The usefulness of
the concept of a diffusion-layer thickness for correlating the segregation
results 1s addressed in Section 4.2. The flow patterns and segrecation
results predicted for this growth confiouration are compared in Section §
to results for tﬁe vertically destabilized (melt on bottom) arrangement.

The tulk of the calculations reported here are for a melt and crystal with
thermophysical properties similar to those of the gallium-doped germanium
system used in several small-scale experiments [5, 8, 29]. The predictions
of melt/solid interface shape, radial dopant profiles and effective axial
segregation coefficients are used to establish the 1ink between the

calculations and experimentally observable quantities.
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2. PROTOTYPE OF VERTICAL BRIDGMAN GROWTH SYSTEM

The finite length of a real ampoule in a Bridgman furnace causes the
heat and mass transfer inside the sample to be time dependent for any
nonzero translation rate., These transients are caused by the steady
decrease in the ratio of melt to crystal in the ampoule and are slow for
the growth rates typical for semiconducter materials. Ve replace the true
unsteady problem with a prototype steady state process viewed from a
stationary reference frame and described in the cylindrical polar coordinate
system shown in Figure 1, The translation of the ampoule is accounted for

by supplying melt into the ampoule at z = 0 with velocity vz = vl and remov-

ing crystal at the other end of the ampoule at the rate V, (ps/pl)Vl =aV, .
For long ampoules and melts with low Prandt! numbers, the transient
effects on heat transfer are small [2€] and the changes in the fluid
mechanfcs are accurately accounted for by the steady state model with
calculations for a succession of ampoule positions inside the furnace,
each of which corresponds to,a different time in the actual growth experi-
ment. Changes in the length of the melt caused by translating the ampoule
lead to transients in dopant transfer that force the average concentration
of dopant over the cross section of the crystal to change with time. Our
hypothetical steady state model for mass transrer ignores this effect.
The prediction of effective segregation coefficients caused by convection
from the results of the steady state model {s acdressed in Section 4.2.
The field equations governing heat transfer in both phases and fluid

flow in t'e melt are put in dimensionless form by scaling lengths with the



height of the ampoule L, velocity !(r.z) with uI/L where a, is the thermal
diffusivity 1n the 1iquid (see the 1ist of thermophysical properties in

Table 1), pressure p(r,z) with p,_azz/L2 and temperature &(r,z) = (?(r.z) - Tc)/
(Th - Tc)‘ In this last definition ?(r.z) is the dimensional temperature
field and Tc and Th are the temperatures of the hot and cold regions of the
furnace. In units of ampoule length, the dimensions of the ampoule and

furnace are the aspect ratio of the ampoule A = R/L, the length of the hot

zZone Lh s Lh/L and the length of the gradient region L = LQ/L. These dimen-

sfonless scalings, especially the cheice of L as the 1:ngth scale, have been
made for convenience and may not give dimensionless groups that are the most
appropriate for the physics controlling the buoyancy-driven flow and associated
dopant segregation. The formulation ~f more meaningful scaling is addressed
in Section 4.5, |

The location of the melt/solid interface 1s represerited as z = h(r),

0<r<A, and the unit vectors everywhere normal N and tangent t to the
interface are

e, -he e + he
Ng=Z__Fr , e =l T2
(1+ h'.z)”z : (1+ hr"')”z ' (M

where hr £ dh/dr and the set (Sr’ € sz\ are unit vectors for the cylindrical
polar coordinate system.

Field variables in the melt (0 < Z < h(r), 0 < r < A) are governed by

the ax{symmetric and dimensionless form of the Boussinesq equations [32]:

Vevse( (2)



ey = <fp4 Prvzg + RaPree, (3)

veve = 76 : (4)

where 7V = e, a/ar + 2 9/32 {is the gradient operator in cylindrical coor-
dinates. The Prandtl Pr and Rayleigh numbers Ra appearing in eq. (3) are
defined as Pr = “/°z and Ra = eg(Th-Tc)L3/azv where the symbols are defined
in Table I The velocity field in the crystal 1s uniform 2t speed Vs and

the temperature field in the crystil w(r) <2<1,0<r < A) 1s governed

by

Pee - ve = yvze . (5)

where y = “s/°l is the ratio of thermal diffusivities in solid and melt and
Pe = vsL7a£ is the Peclet number for convective heat transfer.

The shape of the melt/solid interface h(r) is set by the conditions
for the equilibrium melting temperature ?m and the balance of conductive
heat fluxes across the interface with the latent heat released there. In

dimensionless form, these interface conditions are

8(roh(r)) = (Tp = TM(T, = T,) : (6)
(N-ve), - K(N-ve) =5Pe (Nog,) (7)
where S = AHf/°£°P£(Th - Tc) is the Stefan number and the subscripts in

eq. (7) denote whether the interfacial flux {s evaluated in the crystal
(s) or the melt (2).
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Boundary conditions on velocity at the interface insure no slip tangen-
tial to the crystal and the solidification of melt at a raté propcrtional to
the growth rate V, and the difference between the densities o = (ps/pl)
of the two materials:

x*k = Mg ezl o o) s el (8)

The top surface and sidewall of the ampoule are assumed to be no slip
surfaces so that Vp " 0 and v, * ogPe in the melt. The symmetry boundary

conditions at the axis of the cylinder are

Vo = v /or = 3/ar = 0, r=0,0<cz<1 . (9)

The thermal boundary conditions along the ampoule are modelled after
the idealized situation considered by Fu and Wilcox [2] in which the
ampoule has negligible thermal mass, the adiabatic region is a perfect
{nsulator and the heat transfer rates between the hot and cold regions
of the furnace are so large that the ampoule has the temperature of the
surrounding furnace. In addition, the ends of the ampoule are assumed
to be perfectly insulated. None of thesc assumptions is totally realistic
for small scale experimental systems. Actual ampoules provide resistance
to radial heat transfer and conduct heat axially; this latter effect modifies
axial temperature gradients [26] and causes radfal temperature gradients
near the melt/solid interface [27]. The mathematical forms of the thermal
boundary conditions along the ampoule wall are stated in [32] and are not
repeated here,
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The differential mass balance equation appropriate for dilute dopants

is

(Se/Pr) 7 (ev) = voe : (10)

where Sc £ v/D is the Schmidt number. The boundary conditions used for
solving eq. (10) are

Nevc = (PeSc/Pr)(e, « N)(1 - ke, 0 <r<A, z=h(r) , (1)
ac/3z = (PeSc/Pr)(c-1) , C<r<A , 220 , (12)
a/ar + 0 , r=0=pA , 0<zc<], (13)

Equations (11) and (12) express conservation of mass at the melt/solid inter-
face and the fictitious "inlet" at the melt end (z=0) of the ampoule, res-
pectively. Eauation (13) is the no flux conditiorf valid at the centerline
and sidewall of the ampoule. Once the velocity field 11 the melt and the
shape of the melt/solid interface are determined from the two-phase natural
convection problem described above, equations (10-13) reduce to a 1inear

set to be solved for the concentration distribution throughout the melt,



3. FINITE ELEMENT ANALYSIS

The finite element/Newton technique developed in references [31-32] for
solving steady solidification problems has been applied to thke model of the
vertical Bridgman system described by eqs. (1-9). First, finite element
approximations to the velocities, pressure, temperature and melt/solid
interface shape are combin;d with Galerkin's method to reduce the original
partial differential equations and boundary conditions to a set of nonlinear
algebraic equations. For an approximate location of the solidification 1so-
therm h(r), melt and solid are divided into N_ radfal and N, axial elements;
half of the axial elements are placed in each phase. A sample 4 x 16 (Nr =4,
N, * 16) mesh is shown as Figure 2. The field variables are approximated
by expansiors of standard finite element basis functions and cooff1c1cpts
which are to be determined. We use mixed interpolation [33] for the Boussinesq
equations with continuous bilinear polynomia’s for interpolating pressure and
biquadratic ones for approximating temperature and velocities. The shape of
the melt/sol1d interface h(r) is expanded in terms of Hermite cubic functions.

The fis1d equations (2, 3, 5) are reduced by Galerkin's method to algebraic
residual equations in terms of the unknown coefficients for each variable.

The energy flux condition eq. (7) is incorporated into the residual equations
for the energy equation (5) and the condition for the melting point {sotherm
eq. (6) along the solidification interface 1s distinguished as the equation
for determining the interface location. A separate set of interface residual
equations are formed from eq. (6) by appiying Galerkin's method using the
Hermite cubic polynomials as weighting functions; see [31]. The entire set
of nonlinear algebraic equations for the field variables and interface



.12 -

shape are solved by Newton iteration as described in [30, 31]. Computer-
aided methods for detecting and tracking multiple solutions to the algebraic
equations are also described in [32].

The equations for mass conservation of a dopant (10-13) ace also
solved by the Galerkin finite element method with thc concentration field
c(r,z) approximated by an cxpans1onlof unknown coefficients {°1} and bfcuadratic

basis functions {e'}
N

t
c(riz) =L c ol(r.t) - (14)
i{=]

where Nt {s the total number of basis functions in the expansion. Linear
algebraic equations result from applyirq Galerkin's method to eq. (10) and
using the divergence theorer to incorporate the boundary conditions

(11-13): ) N
L Ay ey o= by . (15)
=]

where

Ay / (o} v vl + ;% (ve! - ved)] av
v
L (16)

’,/;,I Pe(1-k)(e,-N)o'eden + j; Pee’ean ,
0

By !f o Pe a2 : ‘ (17)
%
The nomenclature for the boundaries interface v, and inlet 00 and the melt
volume vy is showr on Figure 2. The equation set (15) s solved by Gaussian

elimination and the resulting concentration fields are plotted as contours



of c(r,z).

Although egs. (10-13) yield a linear problem, the solution is by no means
simple. The high velocities caused by natural convection and the low diffusi-
vities of dopants in melts lead to convection dominated dopant transfer. This
is clearly seen by computing a Peclet number for mass transfer in the melt
as Pem = V*L/0, where V* is the velocity scale for the convection. For
natural convection driven by the vertical temperature gradient in the

1/2 = 8al/8

. 5
ul/L and Pem = Ra"“Se/Pr=1x10

destabilized configuration, V* is Pa
for a Rayleich number of 1 x 104. Solution of the convection-diffusion
problem (10-13) at this level of convection is one of the outstanding
problems n numberical analysis [34, 35]. We have adopted two types

of adaptive spacing of the finite element mesh to accounit for the steep
concentration gradients that result from large Pem. First, each element
of the finite element mesh for velocity and temperature is sub-divided
into smaller sections for approximating c¢(r,z). Secondly, these small
elements are not equally spaced but are araded to be smallest near the

boundaries of the melt where the concentration varies most rapidly.

The stream function y(r,z) for each velocity field is computed by

solving the 1inear equation

2 2 v v
13 g 1 w, 1 3% ., v °“72
T or * r':' 'y 222 Y3 or ’ (18)

by the Galerkin finite-element method with y(r,z) represented in a tiquadratic
basis, just as for the concentration field eq. (14). We display flow fields

in terms of streamlines plotted as contours of uw(r,z).
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4., VERTICALLY STABILIZED CONFIGURATION

The large number of dimensionless thermophysical and geometrical para-
meters that must be set for any one simulation of the Bridgman system and
the cost of each computation have forced us to concentrate on parameters
similar to those for the gallium-doped germarium experiments underway in
the Material Science Department at MIT [36]. The appropriate values of
thermophysical parameters are listed in Table II and the corresponding
dimensionless groups are given in Table 1. The radius of the ampoule
has been taken as 0.5 cm and the growth rate vs has been set at 16 um/sec.
We first consider convection and seareqation in the stabilized configuration
(melt above ..ystal) with the ampoule four times longer than its radius,
J.e., A=0.25.

This configuration and the values of the dimensionless groups listed
in Table II are the basis of the calculations presented in Sections 4.1 - 4.3,
The sensitivity of the results to the ratio of thermal conductivities and

to the design of ampoule and furnace are considered in Sections 4.4 - 4.5,
4.1 Temperature and Velocity Fields

Caiculations of large amplitude natural convection in melts with low
Prandt] number are extremely difficult and the accuracyof the numerical aporoxima-
tions can only be systematically checked by refinement of the finite element
mesh. We have used grids of 4 x 16, € x 24, and 8 x 32 elements to compute
the flows in the base case described above for Rayleigh numbers ranging from

10 to 5 x 106. Streamiines and isotherms computed with the 8 x 32 mesh
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are shown on Figures 3 and 5 for the test case. With this mesh, 239€ nonlinear
equations were solved by Newton's method; and each Newton iteration required
20 minutes of computer time in the Honeywell 6180 at MIT,

Three distinct types of flow patterns were observed. At low Rayleigh
rumbers (Ra < 103) the streamlines were rectilinear and only slightly distorted
by buoyancy forces. For intermediate values of Ra ('IO3 < Ra :_105) a
cellular flow developed, which was driven by the radial temperature cradients
established by the mismatch in thermal boundary conditions between the adiabatic
and hot zones. The flow moved upward along the sidewall and downward at the
centerlines of the ampoule. The center of the cell was located slightly
above the gradient zone and migrated dewnward and toward the sidewall with
increasing Ra. Increasing the Raylefah number tec 2.€ x 106 led to the devel-
opment of a weak secondary cell adjacent to the melt/solid interface, as
shown in Figures 3a and 3h; the onset of the multi-cellular flows marks
the start of the third type of flow pattern. The motion in the secondary
cell next to the intarface is in the opposite direction to the main cell
and leads to qualitatively different radial segregation than the flows
with 2 single cell which exist for Ra less than 1 x 106. This point
is discussed further below.

The three types of flows found with varying Rayleigh number are
also distinguishable on the plot of the circular of the primary cell
shown as Figure 4., One interesting feature of this plot is that a part of
the intermediate region can be identified where Vmax is 1inear in Rayleigh
number. This suggests that an exact linear analysis, such as performed

for rotating flows by Harriott and Brown [12] and for buoyancy-driven
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flows in simpler geometries by Cressler [37], is applicable. Unfortunately, the
temperature field in the melt, even in the absence of convection, is suf-
ficiently complicated that closed-form calculations are irpractical.

The temperature fields for several values of Rayleigh number are displayed
in Figure 5 and show the effect of the low Prandtl number in the gallium-doped

germanium system. For Rayleigh numbers between zero and 1 x 104

» the thermal
fields in both the melt and crystal are essentially the same as the field
calculated without convection (Ra = 0) and are similar to results of Fu and
Wilcox [21]. Increasing Ra above 1 x 104 caused the isctherms alono the
axis of the melt to compress toward the melt/solid interface by the downward
fluid mction; by Ra = 5 x 106 the shape of several isotherms farthest from
the interface has 1nve;ted from convex to concave at the center of the melt,
The isotherms in the crystal were unchanged by changing Ra. Also, the
large portion of the crystal at the uniform temperature € = ' pointed out
that the length of ampoule in the cold portion of the furnace was sufficient
to guarantee that the position of the eird of the ampoule was unimportant.
The shape of the melt/solid interface is given by the isotherm 6 = 0.5
in Figure 5 and is plotted separately on Figure 6. As indicated by the
temperature field the shape of the interface is unchanged by convection
for Ra between 0 and 103. For higher Rayleigh numbers, the hot melt moving
down the axis of the ampoule drove the melt/solid interface deeper into the
adiabatic region. The changes in interface shape caused by convection are
not large; even for Ra = 5 x 'Ioe the deflection of the interface is only

six percent of its mean location.
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The fine finite element mesh (8 x 32 elements) was necessary for

quantitatively accurate calculations over the range 0 < Ra < 1 x 105 and

for qualitatively accurate results above Ra = 1 x 105. The accuracy of the

calculations with the three different finite element arids was assessed
by comparing results for ¥max
the overall heat balance as a function of Rayleigh number. These results

and by computing the dearee of closure of

are tabulated in Table IIl. The heat balance was computed as

aG sf (n + V6)dA/Nu, ; (19)
Oy
where the integral was computed over a1l boundaries 0, surrounding the
melt and Mup was the Nusselt number evaluted at the solidification interface
DI:
Nuy z/ (N « v8)dA . (20)
i
Calculations with all three meshes gave heat balances that closed to within
one percent of the interface flux and Ymax values that were within one percent
of the value for the 8 x 32 mesh when Ra was less than 1 x 104. The errors
in AQ and Ymax for the coarser meshes were larger at larger values of Ra.

A more serious problem with the coarse mesh occurred for Rayleigh numbers
greater than 1 x 105. For both the 4 x 16 and 6 x 24 grids, sequences cf
calculations in increasing Ra failed to converge for values of Ra between
1 x ‘IO6 and 3 x 106. Techniques for detecting multiple steady solutions of
algebraic equations described in another publication [32] were used t»
trace the families of steady solution through turns in Ra. The structure of

these soiutions is represented on Fig. 7 by plotting the Nusselt number NuI
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as a function of Ra. For the 4 x 16 and 6 x 24 grids, three steady solutions
to the algebraic solutions were found for several ranges of Rayleigh number.
These multiple solutions are bogus; refining the grid to 8 x 32 resulted
in the single flow family described above and also represented on Fig. 7. The
reason for the failure of the coarse mesh calculations is seen from the form
of velocity field for Ra = 2.6 x 106. The small secondary cells that are
created alonc the ampoule wall and at the melt/solid interface were not
resolved by the 4 x 1€ and € x 24 grids. Clearly, coarse calculations of
large amplitude convection for low Prandtl number melts can give qualitatively

wrong conclusions about the flow.
4.2 Dopant Segregation

Dopant fields were calculated for the velocity field and melt/solid
interface shapes discussed above. The results reported here were calculated
using a 18 x 34 mesh (2553 unknowns) embedded in the 8 x 16 grid used in the
melt for computing the velocity field. The accuracy of the calculations
of dopant concentration was assessed by computing the dopant mass balance
for the entire melt; this balance closed to within five percent for Rayleigh
numbers up to 1 x 104. The finite element grids used here were inadequate
for dopant calculations at higher values of Ra.

Dopant fields computed for the segregation coefficient (k = 0.1) and
Schmidt number (Sc = 10) similar to gallium in germanium are shown in Fig, 8.

The almost parallel iso-concentration 1ines for Rayleigh numbers up to 10



correspond to the one-dimensional solidification model. The concentration
field was deformed at higher values of Ra; flow downward along the axis
swept dopant from the crystal and induced radfal segregation across the

surface of the crystal. The concentration field at Ra = 1 x 104 had the begin-

" nings of the uniform core of melt and steep concentration gradients along

each boundary which is consistent with the boundary-layer model for a
well-mixed melt. A large amount of radial segregation was present even
at thic level of convection.

The radial variation of dopant composition at the interface is shown
on Figure 9 for the concentration fields in Figure 7. The change in
concentration across the interface evolved with increasing Ra from the
approximately one percent segregation caused by interface curvature at Ra = 0
to almost seventy percent of the mran value 1/k for the worst case of Ra = 1 x 103.
The radial variation in dopant decreased with the more intense flow motion
that corresponded to Ra = 104. The maximum in radial searegation with
increasing convection found here is cons{stent with calculations of Nikitan
et al. [14] for the growth of gallium-doped germanium in a horizontal boat.

The percent radial segregation, defined as

Ac = |e(0,h(0)) - c(A,h(A))] x 100 . (21)

is plotted as a function of Ra on Figure 10 for segregation coefficients
between 0.01 and 0.9. In all cases, Ac reached a maximum for the flow
corresponding to nearly Ra = 'IO3 and decreased for larger values of Rayleigh
number. The value of the segregation coefficient set the mean concentration
in the melt at the interface and affected the level of radial segregation

in the crvstal. The exponentially decreasing concentration profile present

AT . ccm
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" at low values of Ra extended further into the melt for smaller searecation
coefficients and made the concentration field more sensitive to convection.
Consequently the level of segregation Ac was higher for lower k.

Changing the diffusivity of solute also had a marked effect on the
level of radial segregation, as is shown on Figure 1! by calculations of
Ac for a range of Schmidt numbers and all other parameters the same as
for the gallium-doped germanium system. Increasing Sc decreased the
length of the concentration gradient at the interface and caused higher
Peclet numbers (PeM H RaI/ZSc/Pr) at lower values of Ra. The concentration
fields for sample combinations of Sc and Pa are shown in Fiaure 12. At high
Schmidt numbers and Rayleigh numbers of 1 x 103 and above, the isoconcenira-
tion curves develop fingers oriented parallel to the melt/solid interface
that correspond to extremely rapid variation in composition within a distance
of the same order of magnitude at the thickness of the diffusion-layer for

(Ra = 0). This variation lead to large (over 100%) radial secrecation,
4,3 Calculation of Effective Segregation Coefficients

The complicated segregation patterns discussed in the previous section
create doubts as to the applicability of the simple "diffusion-layer” or
"boundary-layer" model fcr correlating axial segregation behavior. Our detaflec
results for the velocity and dopant profiles put us in the rare situation
of befng able to check this correlation. To do this, radially averaged

concentration profiles, defined as
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T(2) sz c(ryz) rdr . (22)
0

were calculated and plotted for each set of Ra, k, and Sc; sample profiles
are shown in Figures 13 and 14 for Sc = 10 and Sc = 50, respectively. For
Tow Raylefgh numbers (0 <R < 1 x 102). these radfally averaged profiles are
essentially the same as the concentration profiles predicted by one-dimensional
models which account only for the convection caused by crystal growth. A
region of nearly uniform average concentration c(z) & Sy developed with
increasing Ra, as shown on Figure 13; here, the profile for Ra = 1 x 'IO4 can
be divided into a region of steep dopant gradient adjacent to the crystal,
a zone of uniform concentration and a gradient zone caused by the fictitious
inlet condition at z - h(0) = 0.

The effective segregation coefficient appropriate for a true unsteady

Bridgman system with A = 0.25 was approximated as

kepe = C5/cy T 1/6y . (23)

where Cg is the dimensionless average concentration across the crystal. Values
of ¢y and keff computed from the finite element results presented ‘n the last
section are summarfized in Table IV.

If a diffusion-layer of thickness § = E/L exists that separates the

crystal surface from bulk melt at concentration Cyo the effective segregation

coefficient kops Can be derived following Flemings [38] as

Ce k

b k + (1-k)exp(-vls/0). '

kepp 2 (24)

or in the dimensionless form used here a;
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k
) . . (25)
eff k + (1-k)erp(-cé Pe Sc/Pr)

Rearranging eq. (25) yields an explicit relation for the diffusion-layer
thickness §:

(1= K ge))
6 = - _L 1" k » eff L] (26)
PeSco keff (1'k)

Values of & computed from eq. (25) with keff calculated from the finite
element results are compared in Table IV to values &, measured from the
profiles of c(z). In each case ¢ and 8¢ are of the same order of magnitude
but may differ by as much as a factor of two. This result is not surprising;
within the distance Gf from the cryst2l in the f{nite element calculations,
the velocity field 1s a combination of the growth velocity and a contribution
from natural convection. These two components are of the same order of
magnitude and it is the latter component whicq causes the discrepancy between

§ and S¢ and which leads to radial segregation.
4.4 Varifation of Thermal Conductivities: K = ks/kz

The ratio of thermal conductivities K = ks/kt is seidom unity for real
materials, as has been assumed in the calculations presented above. Metallic
semiconductors usually have higher conductivities in the melt (K < 1), while
oxide systems usually have greater conductivities in the solid phase (K > 1).
We have examined the effect of varying the conductivity ratio by changing K
to 0.5 and 2.0. Temperature fields are shown in Figure 15 for these two cases

at Ra = 1 x 'IO4 and are essentially the same as for lower values of Rayleigh



number, Changing K from unity destroyed the axial symmetry in the temperature
*{eld and displaced the interface from the center of the adiabatic zone. For
K=0,5 the melt penetrated deeper into the ampoule and the interfac. was
convex toward the crystal. The interface was concave for K = 2,0 and located
above the center of the adiabatic zone. In each case, the deflections of the
interface were ncar1y'ten percent of the mean location compared to the four
percent deflecticns calculated when the conductivity ratio was unity.

Flow fields are displayed in Figure 16 for K = 0.5 and 2.0 and Raylefgh
numbers between zero and 1 x 10‘. The changes in conductivities have 1ittle
effect on the flow pattern besides the small deflection in the flow near the
sol{dification interface needed because of the higher curvature of the crystal
surface. The concentration fields shown on Figure 17 are much more distorted
by the interface curvature; at low convection levels (0 < Ra < 1 x 10%) significant
radial segregation occurred, as marked by the intersection of iso-concentration
curves with the interface. The higher interfacial dopant concentrations appeared
where the interface had its largest positive curvature as measured from the
melt; this point shifted from the centerline for K = 0.5 to the wall of the
ampoule for K = 2,0. The amount of radial segregation Ac caused solely
by interface curvature was 23% for K = 0.5 and 18% for K = 2.0.

Fluid motion caused by natural convection swept dopant from the center
of thc interface towards the ampoule wall. For K = 0.5, weak convection
decreased the radial segregation by stripping away the dopant peak caused
by interfacial curvature. Cellular convection in the melt increased the radial
segregation for the case with K = 2,0 by adding to the layer of dopant
dlready at the edge of the crystal. These results are summarized on

Figure 18 as a plot of Ac as a function of Ra.



4,5 Variation of Melt and Adiabatic Zone Lengths

The radial temperature gradients that drive naturai convection in the
vertically stabilized Bridoman configuration are not physically modelled
by the Rayleigh number Ra & agLa(Th - Tc)/“l“ scaled with the length of the
ampoule. In fact, the structure of the flow should be independent of ampoule
length as long as the flow cell does not interact with the top (2 = () of
the ampoule. The size of the radial temperature gradients will be propor-
tional to that of the axial gradient in the gradient zone (Th - 7c)/Ig
and so a more physically correct measure of the buoyancy driving force is

. AT N (R)s (,_ )- rar®

r a,v r tg .

. (27)

Calculations were performed for melt lengths of 2R, 3R and 4R, with the crystal

length and all other dimensionless groups held at the values of the base case
studied above; the overall ampoule lengths L were 4R, 5R and 6R, respectively.
The intensity of the convection as measured by Rar was held constant for each
aspect ratio of the melt. Temperature, velocity and dopant fields are shown
in Figure 19 for Rar = 11,5625, which corresponds to Ra = 1 x 103 for the base
case A = 0,25, It 1s clearly seen that these thr;e fields are essentialiy

{dentical for all three aspect ratios. The aspect ratio A = 0.25 {s adequate

for model1ing much longer ampoules.

Tha calculations presented in Sections 4.1 - 4.3 show that radfal
segregation results from the interaction of the cellular flow driven by the
radial temperature gradients at the edge of the adfabatic zone with the
concentration gradient adjacent to the melt/solid solid interface.

Fence, the length l.g 2 Eg/L of the adiabatic zone should be an important
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variable in determining the extent of this segregation. Calculations were
performed for an ampoule with aspect ratio A = 1/8 and adfabatic zones with
dimensions L’ of 1/8 (same as in Sections 4.1 - 4,3), 174, 3/8, and 1/2.
Samples isotherms, streamlines and concentration fields are shown in
Figure 20 for Ra = 8.0 x 103 and the thermophysical properties corresponding
to the gallfum-doped germanium system 1isted in Table II. As the length
of the gradient region was increased the center of the cellular flow moved
with the edge of the adiabatic region and was located farther from the melt/
solid interface. For the longest gradient zone Lg = 1/2 (see Fig. 20d) the
bulk of the convection occurred beyond the concentration gradient emanating
from tho melt/solid interface and the concentration field there was only
s1ightly disturbed by the flow. Very 1ittle radial segregation is expected
for these conditions. The percent radial searegation Ac is plotted on Fig. 20

as a function of Rayleigh number fur the four values of L9 1isted above.

Fixing Ra and increasing L_ corresponds experimentally toc holding

constant the ovarall tcmporatUi: difference (Th - Tc) and changing only

the length of the adiabatic zone. This procedure decreases the temperature
gradient in the melt and weakens the flows, as shown on Fig., 20 by the
increased spacing of the isothurms and by the decrease of the circulation

% with increasing L Calculations with constant intensity of the

Yma g
convection requira fixing the radially-scaled Rayleigh number Ra, (see
eq. 27). Curves of constant Ra, are shown on Fig. 21 and demonstrate

the decrease in radial segregation with increasing L At moderate convection



levels the adfabatic zone can be made 1ong enough that the cellular flow
does not interact with the dopant diffusion-layer adjacent to the crystal,
The minimum length for this coupling will he strongly dependent on the value
of the diffusivity (Schmidt number), which sets the length of the concentra-
tion gradient; see Fig. 10.



5. VERTICALLY DESTABILIZED CONFIGURATION

When the melt is positioned below the crystal the vertical temperature
gradient leads to unstable density stratification which enhances convection.
Calculations were performed for the destabilized geometry over a range of
Raylefgh number Ra with the thermophysical properties listed in Table II,
The size of the ampoule was taken to be the same as the base case for
the stabilized system, f.e. L
to Ra =1 x10°

g = 1.0 and A = 1/4, For Rayleich numbers up
, the temperature fields for the destabilized configuration
were indistinguishable from the one for pure conduction (Ra = 0; see Fig. 3a)
and .. so are not shown here. Streamlines computed for four representative
values of Ra are displayed as Fig. 22.

The direction of the flow in the destabilized system was opposite that
for the stabilized configuration and had qualitatively different effects on
melt/solid interface shape and solute segreaation. Melt moved upward along
the sidewall of the ampoule, turned inward at the melt/solid interface,
and fell along the centerline of the melt. As in the stabilized geometry,
thiee regimes of the flow were located with changing Ra. Cellular fluid
motion developed near the centerline for low values of Rayleigh number
and spread toward the ampoule wall with increasing Ra. The center of the
cell was positioned near the edge of the adiabatic zone, indicating that
the radial temperature gradients at this edge were influencing the flow.

At Ra = 1 x 10s (see Fig. 22d) the destab‘lizing axial temperature gradient
was controlling the flow and the cell had migrated downward in the ampgoule.
Calculations in a similar flow geometry and low Prandtl number [31] have
indicated that the destabilized flow will separate from the sidewall at
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higher Rayleigh numbers.

Melt/solid interface shapes are shown in Fig. 23 for the flow fields
given in Figure 22. Again, conduction dominated the heat flux in the melt
near the surface of the crystal and the shape of the solidification isotherm
was only s1ightly altered by convection. The shape shown for Ra between 0
and 1 x 103 was the same as shown for the stabilized configuration and low
Rayleigh numbers in Fig. 6. The hot melt rising along the ampoule wall
pushed the interface higher into the adiabatic zone at Ra = 1 x 103 and
above and resulted in interfaces with convection being "flatter" than the
shape corresonding to Ra = 0, The maximum height of the interface for Ra =
1 x 105 occurred off the centerline of the ampoule.

More dramatic differences are found by comparina radial dopant profiles
for the two geometries. Dopant fields and interface distributions are shown
in Figs. 24 and ¢5 for the parameters listed in Table II. The flow upward
to the interface swept dopant from the outer edges of the cryvstal to the
center of the ampoule. This led to interfacial concentrations that were
highest at the center of the crystal, see Fig. 24. The amount of radial
segrecation across the crystal decreased for Ra = 1 x 104. Just as in the
case of the stabilized configuration. The percent radial segregation expected
in the stabilized and destabilized geometries are compared directly on Fig. 26.
The maximum 1n radial segregation is twenty percent less for the destabilizing

configuration than for the stabilized system.
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6. DISCUSSION

The coupled analysis of natural convection, melt/solid interface shape
and dopant segregation in small-scale crystal growth systems is complicated,
but is no longer impossible, because of the advent of new finite-element
methods. The detailed pictures of the field variables and solidification
front for the vertical Rridgman system studied here give new insights into
the role of convection in setting the effective segregation between the bulk
melt and crystal and the radial segregation in the crystal.

For moderate levels of convection, the stagnant-film or diffusion-layer
model is a gross over-simplification of these interactions. Diffusion-layer
thicknesses § determined from ea. (26) and experimental data are, at best,
an empirical fit to the effective segregation coefficient for the crystal/melt
system. The comparison in Section 4.3 demonstrates that, although the radially
averaged diffusion-layer thickness determined from the finite element simulations
and eq. (26) are of the same order-of-magnitude, the actual concentration gradient
adjacent to the crystal is far from radially uniform., As much as sixty percent
radial segregation can exist. Cnly detailed calculations of the exact interaction
of fluid flow and the dopant profile adjacent to the interface can be used
to estimate the level of radial segregation in the crystal.

Our study of a prototype Bridgman system gives qualitative understanding
of fluid flow and dopant segregation in actual growth systems and will serve
as the starting point for more refined calculations aimed directly at comparison
with experiments 1n a well-characterized small-scale system [36]. In these

calculations, the ratio of thermal conductivities K between melt and crystal
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and the length of the gradient zone t; have emerged as important desian
parameters for determining interface ;hape and radial segregation. The
value of K sets the shape of the interface and determines the qualitative
behavior of the radial segregqation with increased convection. The length
tg. sets the degree of interaction between the cellular flow and the
concen.ration gradient adjacent to the interface. For long enough gradient
zones and moderate convection levels, the flow causes little radial segrega-
tion; see Fig. 21.

Accurate comparisons with experimentally determined interface shapes
and racdial and axial dopant profiles will require the inclusicn of the
temperature variations of key thermcphysical properties, such as the melt
and solid conductivities and the density of the melt, Most of these variations
are unknown, The thermal interactions between the ampoule and the surroundings,
e.g. heat capacity and conductivity of the ampoule, will also have to be
more accurately accounted for to correctly model racdial temperature gradients
in the system.

The slow translation of the ampoule has 1ittle effect on the temperature
and velocity fields, when the ampoule is sufficiently long; however, the average
concentration of dopant in the melt will increase slowly with time. For con-
vection levels intense enough that a plateau in c(z) forms in the melt (see
Fig. 13), this transient can be studied by an unsteady dopant calculation
with fixed melt length and steady fluid flow, but with a time varying inlet
concentration determined by an overall mass balance. For very low convection
levels and high diffusivities (low Sc) where the concentration gradient extends

to the end of the ampoule, fully transient calculations taking into account

the length of the melt will be necessary. Efficient numerical methods presen*’y
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exist only for one-dimensional solidification problems [39] and are beina
extended to two-dimensional simulations.

The most critical issue not addressed in this paper is the transition
from the steacdy-state flow patterns predicted here to time-periodic flows
observed in some experiments [5, 29]. Mathematically, these transitions
occur as Hopf bifurcations from the steady flows and have been predicted
theoretically by computer-aided bifurcation analysis combined with finite-
element calculations [40] for low Prandt]l number melts in the horizontal
boat geometry studied experimentally by Hurle et al. [41]. Simulation
of crystal growth in the time-periodic regime requires time-dependent
solution of the Bousinesq equations as performed by some researchers
[14, 42] without the interaction with the melt/solid interface. Fully
transient calculations are no panacea. Besides beina extremely expensive,
their accuracy is difficult to assess. The loss-of-existence of steady
solutions shown in Section 4.1 for crude finite element approximations
would be manifested as time-fluctuating flows in transient calculations.
As is the case here, refined transient calculations may lead to steacy

velocity and temperature fields.
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Dimensionless Parameters and Representative

Values for Gallium-Doped Germanium System

GROUP DEFINITION VALUE
Rayleigh Number Ra = 8q(T, - T)LY/apy 0- 10
Prandtl Number Pr = ”’“z 0.01
Peclet Number Pe = VsL/“z 0.0
Conductivity Ratio K 2 ks/kz 1.0
Stefan Number S = AHf/DZsz(Th - Tc) 1.0
Schmidt Number Sc = v/D 10
Thermal Diffusivity y £ °s/°1 1.0
Ratio
Density Ratio oz °s/°!. 1.0




Table II. Material Properties Characteristic of Gallium-Doped Germanium

Property

Thermal conductivity of melt (kz)

Thermal conductivity of solid (ks)

Heat capacity of melt (cp‘)

Heat capacity of solid (cps)
Density of melt (p,)

Density of solid (o)

Melting temperature (TP)
Kinematic Viscosity of Melt (v)
Heat of fusion (&H)

Thermal Expansion Coefficient (8)
Diffusivity of Ga in Ge (D)

Seqrogati?n Coefficient of
Ga in Ge (k)

Value
N.17 W/K ¢cm
0.17 W/K cm
0.17 J/gm K
0.17 J/gm K
5.6 o/cm’
5.6 g/cm3
95e°C
0.13 cmzlscc
506 J/gm
0.25 x 107 (k)"
1.3 x 107 en?/sec

0.1
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