
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19840019503 2020-03-20T23:00:45+00:00Z



^ $,.Ib.n:.tEts! A.o^ CQ .apt	 /3/J S/4

RADIAL SEGREGATION INDUCED BY NATURAL CONVECTION

AND MELT/SOLID INTERFACE SHAPE IN VERTICAL BRIDGMAN GROWTH

by

i
Chiechun J. Chang and Robert A. Brown

Department of Chemical Engineerinq and 	 Z 45

Materials Processing Center	 ^^	 s
Massachusetts Institute of Technology

Cambridge, MA 02139^E`

November 1982	 ^, 030
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The roles of natural convection in the melt and the shape of the melt/solid
interface on radial dopant segregation are analyzed for a prototype of vertical
Bridgran crystal growth system by finite element methods that solve simultaneously
for the velocity field in the melt, the shape of the solidification isotherm,
and the temperature distribution in both phases. Results are presented for
crystal and melt with thermophysical properties similar to those of gallium-
doped germanium in Bridgman confi gurations with melt below (thermall y destabi-
lizing) and above (stabilizing) the crystal. Steady axisymmetric flows are
classified accordin g to Rayleigh number as either being nearly the vrowth
velocity, having a weak cellular structure or	 having large amplitude cellular
convection. The flows in the two Bridgman configurations are driven by different
temperature gradients and are in opposite directio.is . Finite element calculations
for the transport of a dilute dopant by these flow fields reveal radial segrega-
tion levels as large as sixty percent of the mean concentration. Segregation
is found most severe at an intermediate value of Raylei gh nuirber above which
the dopant distribution along the interface levels as the intensity of the
flow increases. The complexity of the concentration field coupled with
calculations of effective segregation coefficient show the coarseness of
the usual diffusion-layer approximation for describing the dopant distribution
adjacent to the crystal. The length of the gradient zone and the ratio of
thermal conductivities between melt and crystal are identified as additional
critical parameters for setting the degree of radial segregation. The predic-
tions of melt/solid interface shape and axial and radial dopant segregation
will form the basis for the first comparison between detailed fluid mechanical
models of melt crysta'I growth and actual experiments.
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1. INTRODUCTION

The compositional uniformity of dopants and impurities in semi-

conductor crystals grown from the melt depends strongly on the pattern

and intensity of flow in the melt and on the shape of the melt/solid

interface. In processes such as the Czochralski and floatin g zone

methods for producing silicon and the vertical eridcmian configuration

studied here, the unequal partitioning of dopant between melt and crystal
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during solidification causes a concentration gradient perpendicular to the

melt/solid interface. When the melt/solid interface is planar and the melt

is quiescent except for motion caused by crystal growth the concentration

field decays exponentially with distance into the melt. Curvature of the

solidification interface and convection in the melt both change the concentra-

tion distribution along the interface and alter the dopant level in the

crystal.	 j

The effect of convection on segregation in the growth direction was

pointed out by the Burton et al. analysis [1-2] of the effect of crystal

rotation on mass transfer. When the crystal di4meter is large and the

velocity field is similar along the radius of the melt/solid interface

convection only alters the concentration field perpendicular to the inter-

face. Burtin et al. analyzed this case and developed an expression for an

effective segregation coefficient and introduced the notion of an axial

"boundary layer" thickness for diffusion controlled mass transfer. Others

[4-8] have applied the idea of a uniform diffusion-layer or stagnant-film

that is masking a growing crystal from a well mixed bulk and have determined
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so-called boundary-layer (more appropriately called diffusion-layer) thick-

nesses without any picture for the fluid motion in the melt. Other than

Burtin, Prim and Slichter's original analysis of rotating flows, few papers

dealing with melt crystal growth [9-10] have addressed the exact coupling

between the fluid flow and mass transfer in a consistent way.

In many growth configurations, the concept of a uniform diffusion-layer

yields an over-simplified view of the role of convection in do pant segregation

[11]. when the flow is laminar and cellular, as is the case for many

small-scale growth systems and for reduced gravity experiments, convective

mass transfer is uneven along the surface of the crystal and significant

radial segregation results. The coupling between moderate convection and

radial dopant segregation has been thoroughly analyzed for the rotationally-

driven flows in small-scale floating zones [10, 12, 13] and has been demonstrated

for buoyancy-driven convection under microgravity conditions [14]. All

these studies were of model crystal growth systems with planar solidifica-

tion interfaces.

Coriell and Sekerka ([15]; also see ref. 16) have demonstrated that sig-

nificant radial segregation occurs in systems without convection tangent to the

crystal surface when the radius of curvature of this interface is the same

or less than the length scale of the concentration gradient adjacent to the

interface. Curvaturt-induced segrecation has been shown to be an important

contribution to dopant inhomogeneities in capillary growth systems [17-19]

and may be important in other small-scale crystal growth experiments in

which convection in the melt has been suppressed.

The purpose of this paper is to present theoretical results from

---.. --	 _

i
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computer-aided analysis of the interactions of natural convection and melt/

solid interface shape in setting dopant distributions in crystals grown in

a vertical Bridgman system. The prototype growth system considered here

is shown in Figure 1 and consists of crystal and melt contained in a cylin-

drical ampoule of radius R and length L pulled slowly through a vertically

aligned furnace with hot and cold isothermal zones. The isothermal zones

are separated by an adiabatic region designed to promote steep axial tempera-

ture gradients and to maintain a flat solidification interface. Heat transfer

in the Bridgman system without convection is well understood. A host of

	

	 y
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one- and two-dimensional heat transfer models [20-27] have been used to analyze

the magnitudes of axial and radial temperature gradients in the gradient zone

and the shape of the pelt/solid interface. No prev •.'ous	 studies have con-

sidered the effect of convection on melt/solid interface shape.

Convection in the Bridgman system is driven by buoyancy differences

induced by radial and axial temperature gradients and may be either laminar,

perfectly time-periodic or turbulent, depending on the magnitude of the

temperature gradient, the size of the ampoule and its orientation with

re:, et to the direction of gravity. When the melt is positioned below the

crystal the axial temeperature gradient places the hottest (and less dense)

melt on the bottom of the ampoule and is destabilizing. Kim et al. [5]

used dopant striations in gallium-doped germanium crystals to identify

melt lengths at which each of the three forms of convection were present.

Others [8. 28] have oriented the melt above the crystal in order to produce

a stably-stratified axial density gradient. Convection still exists in this

configuration; radial temperature gradients introduced by changes in lateral
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`peat transfer conditions cause lateral density variations that can drive

laminar and even turbulent convection, as demonstrated in [29].

The adverse effects of large amplitude convection, especially time-

dependent flows, on dopant segregation in the crystal are so severe

that solidification experiments have been performed in outer space [30, 31]

to test the feasibility of crystal growth in a reduced gravity environment.

Even these experiments are not convectionless because time-averaged accelera-

tions with magnitude as large as 10 -4 the gravitational acceleration on earth

still exist on board most spacecraft. As discussed below, the differences

!	 in space experiments may cause larger concentration variations than seen

in crystals grown on earth.-

The calculations described here are of the axisymmetric steady state

velocity, temperature, and concentration fields and melt/solid interface

shapes for the model of the vertical Bridgman system described in Section 2.

The mathematical free-boundary problem that describes these variables

is solved by a newly developed [31, 32] finite-element/Newton technique

that computes simultaneously the shape of the solidification interface,

the velocity and pressure fields in the melt and the temperature distri-

bution in both melt and crystal. The increased efficiency of this algorithm

over any other developed before [31] makes possible the wide range of

calculations presented here. Also, as described in [32], the use of

Newton's method for solution of the full set of nonlinear algebraic equa-

tions makes available powerful algorithms for detecting either

the loss of solution or the existence of multiple solutions

to the free-boundary problem represented by the finite-element equations.

-	
• . t • ter, aw ....r r..+=...rTt--rte 7
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Flow fields calculated with the finite-element/Newton algorithm. a re used

in a separate calculation of the distribution of a dilute dopant Within

the melt and crystal. All the numerical methods are presented in detail

elsewhere and so are only sketched in Section 3.

Flow fields and concentration distributions in the vertically stabilized

(melt on top) configuration are presented in Section 4 along witr. sensitivity

analysis for the lenoth of the melt, the size of the gradient zone and the

ratio of thermal conductivities between melt and solid. The usefulness of

the concept of a diffusion-layer thickness for correlating the segregation

results is addressed in Section 4.2. The flow patterns and segregation

results predicted for this growth confi guration are compared in Section 5

to results for the vertically destabilized (melt on bottom) arrangement.

The sulk of the calculations reported here are for a melt and crystal with

thermophysical properties similar to those of the gallium-doped germanium

system used in several small-scale experiments [5, 8, 29]. The predictions

of melt/solid interface shape, radial dopant profiles and effective axial

segregation coefficients are used to establish the link between the

calculations and experimentally observable quantities.

3
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2.	 PROTOTYPE OF VERTICAL BRIDGMAN GP.OWTH SYSTEM
r

The finite length of a real ampoule in a Bridgman furnace causes the

heat and mass transfer inside the sample to be time dependent for any

{ nonzero translation rate.	 These transients are caused by the steady

decrease in the ratio of melt to crystal in the ampoule and are slow for

the growth rates typical for semiconductor materials. 	 We replace the true

unsteady problem with a prototype steady state process viewed from a

stationary reference frame and described in the cylindrical polar coordinate

system shown in Figure 1. 	 The translation of the ampoule is accounted for

by supplying melt into the ampoule at z - 0 with velocity ' z - VI and remov-

ing crystal at the other end of the ampoule at the rate V s a (p s/ p l N - ovi .
For long ampoules and melts with low Prandtl numbers, the transient

effects on heat transfer are small	 [2E] and the changes in the fluid

mechanics are accurately accounted for by the steady state model with

calculations for a succession of ampoule positions inside the furnace,

each of which corresponds to.a different time in the actual growth experi-

ment.	 Changes in the length of the melt caused by translating the ampoule

lead to transients in dopant transfer that force the avera ge concentration

of dopant over the cross section of the crystal to chance with time. 	 Our

5. hypothetical steady state model for mass transfer ignores this effect.

The prediction of effective segregation coefficients caused by convection

from the results of the steady state model 	 is addressed in Section 4.2.

The field equations governing heat transfer in both phases and fluid

flow in t'ie melt are put in dimensionless form by scaling lenoths with the

+1	 .

1^
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height of the ampoule L, velocity v(r,z) with a I/L where a. is the thermal

diffusivity in the liquid (see the list of thermophysical properties in

Table I), pressure p(r,z) with p
Rat2

/L2 and temperature e(r,z) =_ (T(r,z) - Tc)/

(Th - Tc ). In this last definition T(r,z) is the dimensional temperature

field and T  and Th are the temperatures of the hot and cold regions of the

furnace. In units of ampoule length, the dimensions of the ampoule and

furnace are the aspect ratio of the ampoule A _ R/L, the length of the hot

zone Lh = Lh/L and the length of the gradient region L  _ L a/L. These dimen-

sionless scalings, especially the choice of L rs the length scale, have been

made for convenience and may not give dimensionless groups that are the most

appropriate for the physics controlling the buoyancy-driven flow and associated

dopant segregation. The formulation Nf more meaningful scalin g is addressed

in Section 4.5.

The location of the melt/solid interface is represented as z - h(r),

0 < r < A , and the unit vectors everywhere normal N and tangent t to the

interface are

	

N _ !z - h r!r	 ,	
t n 

er + hreZ

(1}

	

(1 +h r )	 -	
(1 +hr )

where h r = dh/dr and the set (e r , ee, e.) are unit vectors for the cylindrical

polar coordinate system.

Field variables in the melt (0 < z < h(r), 0 < r < A) are governed by

the axisymmetric and dimensionless form of the Boussinesq equations [32]:

7•v n 0 (2)
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v	 Pv	 -Op + Pr'72y + RaPr 1; e 
	

(3)

v	 ve	 72e	 ,	 (4)

where v =_ e 	 3/3r + :Z 3/3z is the grad'ent operator in cylindrical coor-

dinates. The Prandtl Pr and Rayleigh numbers Ra appearing in eq. (3) are

defined as Pr = v/a I and Ra = eg(Th -Tc )L 3 /azv where the symbols are defined

in Table IL The velocity field in the crystal is uniform at speed Vs and

the temperature field in the crystal .% (r) .l z < 1, 0 < r `_ A) is governed

by

Pe ez . ce = Y"2 e	 (5)

where Y = a s /aâ is the ratio of thermal diffusivities in solid and melt and

Pe = VsL%at is the Peclet number for convective heat transfer.

The shape of the melt/solid interface h(r) is set by the conditions

for the equilibrium meltinq temperature T 	 and the balance of conductive

heat fluxes across the interface with the latent heat released there. In

dimensionless form, these interface conditions are

e( r , h ( r )) ° (Tm - Tc )/( Th - Tc )	 (E)

(N • De) t - K (N	 Ce) s n SPe (N •!X )	 ,	 (7)-
i

where S =_ &Hf/okcP 
t 
(Th - Tc ) is the Stefan number and the subscripts in

eq. (7) denote whether the interfacial flux is evaluated in the crystal

i^	 (s) or the melt (1).
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Boundary :onditions on velocity at the interface insure no slip tangen-

tial to the crystal and the solidification of melt at a rate prorertional to

the growth rate V s and the difference between the densities o =_ (cS /ot)

of the two materials:

V • t s Pe(ez	t)	 o(v•N) - Pe(e z • N) 	 (8)

The top surface and sidewall of the ampoule are assumed to be no slip

surfaces so that yr n 0 and vz n QPe in the melt. The symmetry boundary

conditions at the axis of the cylinder are

V  • avz/ar - War • 0.	 r n 0. 0 < z < 1 .	 (9)

The thermal boundary conditions along the ampoule are modelled after

the idealized situation considered by fu and Wilcox [2] in which the

ampoule has negligible thermal mass, the adiabatic region is a perfect

Insulator and the heat transfer rates between the hot and cold regions

of the furnace are so lar5e that the ampoule has the temperature of the

surrounding furnace. In addition, the ends of the ampoule are assumed

to be perfectly insulated. None of these assumptions is totally realistic

for small scale experimental systems. Actual ampoules provide resistance

to radial heat transfer and conduct heat axially; this latter effect modifies

axial temperature gradients [26] and causes radial temperature gradients

near the melt/solid interface [27]. The mathematical forms of the thern ,31

boundary conditions along the ampoule wall are stated in [32] and are not

repeated here.

i

1
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The differential mass balance equation appropriate for dilute dopants

is

MPH 0 - (cv) n 72c	 1	 (10)

where Sc =_ v/ 4 is the Schmidt number. The boundary conditions used for

solving eq. (10) are

N - oc n (PeSe/Pr)(e z - N)(1 - k)c. 0 < r < A. z n h(r) .	 (11)

ac/8z • (Pest/Pr)(c-1) . 0 < r < A . z a 0 .	 (12)

aci 2r r 0 . r n 0 n A . 0 < z < 1.	 (13)

Equations (11) and (12) express conservation of mass at the melt/solid inter-

face and the fictitious "inlet" at the melt end (W) of the ampoule. res-

pectively. Equation (13) is the no flux conditiorf valid at the centerline

and sidewali of the ampoule. Once the velocity field ii the melt and the

shape of the melt/solid interface are determined from the two-phase natural

convection problem described above. equations (10-13) reduce to a linear

set to be solved for the concentration distribution throughout the melt.

M

r
s



3. FINITE ELEMENT ANALYSIS

The finite element/Newton technique developed in references [31-32] for

solving steady solidification problems has been applied to the model of the

vertical Bridgman system described by eqs. (1-9). First, finite element

approximations to the velocities, pressure, temperature and melt/solid

interface shape are combined with Galerkin's method to reduce the original

partial differential equations and boundary conditions to a set of nonlinear

algebraic equations. For an approximate location of the solidification iso-

therm h(r), melt and solid are divided into N  radial and NZ axial elements;

half of the axial elements are placed in each phase. A sample 4 x 16 (N r - 4,

N  - 16) mesh is shown as Figure 2. The field variables are approximated

by expansions of standard finite element basis functions and coefficients

which are to be determined. We use mixed interpolation [33] for the Bousslnesq

equations with continuous bilinear polynomials for interpolatinq pressure and

biquadratic ones for approximating temperature and velocities. The shape of

the melt/solid interface h(r) is expanded in terms of Hermit* 	 cubic functions.

The fi-1d equations (2, 3, 5) are reduced by Galerkin's method to algebraic

residual equations in terms of the unknown coefficients for each variable.

The energy flux condition sq. (7) is incorporated into the residual equations

for the energy equation (S) and the condition for the melting point isothem

sq. (6) along the solidification interface is distinguished as the equation

for determining the interface location. A separate set of interface residual

equations are formed from eq. (6) by app;ying Galerkin's method using the

Hermite cubic polynomials as weighting functions; set [31]. The entire set

of nonlinear algebraic equations for the field variables and interface
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shape are solved by Newton iteration as described in [30, 31]. Computer-

aided methods for detecting and tracking multiple solutions to the algebraic

equations are also described in [32].

The equations for pass conservation of a dopant (10-13) are also

solved by the Galerkin finite element method with the concentration field

c(r,z) approximated by an expansion of unknown coefficients (ci} and biouadratic

basis functions {Qi}

N

c(r,z)	 ci m i ( r .t)	 (14)

1.1

where N  is the total nuRber of basis functions in the expansion. Linear

algebraic equations result from applyirq Galerkin's method to eq. (10) and

using	 the divergence theorer to incorporate the boundary conditions

N

F, 
Aia 

ca	 b1	 (15)

W

where

fAID 3	 [m1 v • om + 3c (od i - 70J )] dV

Vt
(16)

♦ 	 Pe(1- k)(ez•N)oi0jdA +f Pet ItidA

I	 D0

t i	e f 0 1 Pe dA	 (11)

D0

The nomenclature for the boundaries interface V, and inlet p0 and the melt

volume V
I 

is shown. on Figure 2. The equation set (15) is solved by Gaussian

elimination and the resulting concentration fields are plotted as contours

r—	 -	
'T	 ` -'
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of c(r,t).

Although eqs. (10-13) yield a linear problem, the solution is by no means

simple. The high velocities caused by natural convection and the low diffusi-

vities of dopants in melts lead to convection dominated dopant transfer. This

is clearly seen by computing a Peclet number for mass transfer in the melt

as Pem = V*L/4, where V* is the velocity scale for the convection. For

natural convection driven by the vertical temperature gradient in the

destabilized configuration, V* is Pa 1/tat/L and Pem - ;a 1/2 Sc/Pr - 1 x 105

for a Raylei gh number of 1 x 104 . Solution of the convection-diffusion

problem (10-13) at this level of convection is one of the outstanding

p roblems in numberical analysis [34, 35]. We have adopted two types

of adaptive spacing of the finite element mesh to accour+t for the steep

concentration gradients that result from large Pe m. First, each element

of the finite element mesh for velocity and temperature is sub-divided

into smaller sections for approximating c(r,z). Secondly, these small

elements are not equally spaced but are Graded to be smallest near the

boundaries of the melt where the concentration varies most rapidly.

The stream function W(r,z) for each velocity field is computed by

solving the linear equation

1 a2w 	 1	 av + 1 a20 - avr 	 avz

'r Z --7 TF r 
a
= az - ar

by the Galerkin finite-element method with 4, (r,z) represented in a biquadratic

basis, gust as for the concentration field eq. (14). We display flow fields

in terms of streamlines plotted as contours of w(r,z).

1

(18)

l
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4. VERTICALLY STABILIZED CONFIGURATION

The large number of dimensionless thermophysical and geometrical para-

meters that must be set for any one simulation of the Bridgman system and

the cost of each computation have forced us to concentrate on parameters

similar to those for the gallium-doped ger:naAium experiments underway in

the Material Science Department at MIT [36]. The appropriate values of

thermcphysical parameters are listed in Table II and the corresponding

dimensionless groups are given in Table I. The radius of the ampoule

has been taken as 0.5 cm and the growth rate V s has been set at 16 um/sec.

We first consider convection and searevation in the stabilized configuration

(melt above #.. ,ystal) with the ampoule four times longer than its radius,

i.e., A - 0.25.

This configuration and the values of the dimensionless groups listed

in Table II are the basis of the calculations presented in Sections 4.1 - 4.3.

The sensitivity of the results to the ratio of the y uil conductivities and

to the design of ampoule and furnace are considered in Sections 4.4 - 4.5.

4.1 Temperature and Velocity Fields

Calculations of large amplitude natural convection in melts with low

Prandtl number are extremely difficult and the accuracy of the nunericalaporoxima-

tions can only be systematically checked by refinement of the finite element

mesh. We have used grids of 4 x 16, 6 x 24, and 8 x 32 elements to compute

the flows in the base case described above for Rayleigh numbers ranging from

10 to 5 x 106 . Streamlines and isotherms computed with the 8 x 32 mesh
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are shown on Figures 3 and 5 for the test case. With this mesh, 239£ nonlinear

equations were solved by Newton's method; and each Newton iteration required

20 minutes of computer time in the Honeywell 6180 at MIT.

Three distinct types of flow patterns were observed. At low Rayleigh

numbers (Ra < 103 ) the streamlines were rectilinear and only slightly distorted

by buoyancy forces. For intermediate values of Ra (103 < Ra < 106 ) a

cellular flow developed, which was driven by the radial temperature cradients

established by the mismatch in thermal boundary conditions between the adiabatic

and hot zones. The flow moved upward along the sidewall and downward at the

centerlines of the ampoule. The center of the cell was located slightly

above the gradient zone and migrated downward and toward the sidewall with

increasing Ra. Increasing the Raylei gh nur^ber to 2.6 x 10 6 led to the devel-

opment of a weak secondary cell adjacent to the melt/solid interface, as

shown in Figures 3o and 3h; the onset of the multi-cellular flows marks

the start of the third type of flow pattern. The motion in the secondary

cell next to the interface is in the opposite direction to the main cell

and leads to qualitatively different radial segregation than the flows

with a single cell which exist for Ra less than 1 x 106 . This point

is discussed further below.

The three types of flows found with varying Rayleigh number are

also distinguishable on the plot of the circular of the primary cell Amax

shown as Figure 4. One interestin g feature of Viis plot is that a part of

the intermediate region can be identified where 
'max 

is linear in Rayleigh

number. This suggests that an exact linear analysis, such as performed

for rotating flows by Harriott and Brown [12] and for buoyancy-driven

f
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flows in simpler geometries by Dressler [37], is applicable. Unfortunately, the

temperature field in the melt, even in the absence of convection, is suf-

ficiently complicated that closed-form calculations are irr d ractical.

The temperature fields for several values of Rayleigh number are displayed

in Figure 5 and show the effect of the low Prandtl number in the gallium-doped

germanium system. For Rayleigh numbers between zero and 1 x 10 4 , the thermal

fields in both the melt and crystal are essentially the same as the field

calculated without convection (Ra - 0) and are similar to results of Fu and

Wilcox [21]. Increasing Ra above 1 x 10 4 caused the isotherms alon g the

axis of the melt to compress toward the melt/solid interface by the downward

fluid motion; by Ra - 5 x 10 6 the shape of several isotherms farthest frorr

the interface has inverted from convex to concave at the center of the melt.

The isotherms in the crystal were unchanged by changing Ra. Also, the

large portion of the crystal at the uniform temperature e = ' pointed out

that the length of ampoule in the cold portion of the furnace was sufficient

to guarantee that the position of the end of the ampoule was unimportant.

The shape of the melt/solid interface is given by the isotherm 6 - 0.5

in Figure 5 and is plotted separately on Fi gure 6. As indicated by the

temperature field the shape of the-interface is unchanged by convection

for Ra between 0 and 103 . For higher Rayleigh numbers, the hot melt moving

down the axis of the ampoule drove the melt/solid interface deeper into the

adiabatic region. The changes in interface shape caused by convection are

not large; even for Ra n 5 x 10 6 the deflection of the intersace is only

six percent of its mean location.
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The fine finite element mesh (8 x 32 elements) was necessary for

quantitatively accurate calculations over the range 0 < Ra < 1 x 10 6 and

for qualitatively accurate results above Ra - 1 x 10 6 . The accuracy of the

calculations with the three different finite element Grids was assessed

by comparing results for 
*max 

and by computing the decree of closure of

the overall heat balance as a function of Rayleigh number. These results

are tabulated in Table III. The heat balance was computed as

oQ =f	 (n - DA)dA/NuI

.! DM

where the integral was computed over all boundaries D M surrounding the

melt and Elu l was the Nusselt number evaluted at the solidification interface

DI:

Nu I =I (N - Ve W

DI

Calculations with all three meshes gave heat balances that closed to within

one percent of the interface flux and 
Amax 

values that were within one percent

of the value for the 8 x 32 mesh when Ra was less than 1 x 10 4 . The errors

in AQ and 
'max 

for the coarser meshes were larger at larger values of Ra.

A more serious problem with the coarse mesh occurred for Rayleigh numbers

greater than 1 x 10 6 . For both the 4 x 16 and 6 x 24 grids, sequences of

calculations in increasing Ra failed to converge for values of Ra between

1 x 106 and 3 x 106 . Techniques for detecting multiple steady solutions of

algebraic equations described in another publication [32] were used ti

trace the families of steady solution through turns in Ra. The structure of	 f

these solutions is represented on Fig. 7 by plotting the Nusselt number Nu
I

(19)
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as a function of Ra.For the 4 x 16 and 6 x 24 grids, three steady solutions

to the algebraic solutions were found for several ranges of Rayleigh number.

These multiple solutions are bonus; refinin g the grid to 8 x 32 resulted

in the single flow family described above and also represented on Fig. 7. The

reason for the failure of the coarse mesh calculations is seen from the form

of velocity field for Ra - 2.6 x 10 6 . The small secondary cells that are

created alon g the arrpoule wall and at the melt/solid interface were not

resolved by the 4 x 16 and 6 x 24 grids. Clearly, coarse calculations of

large amplitude convection for low Prandtl number melts can give qualitatively

wrong conclusions about the flow.

4.2 Dopant Segregation

Dopant fields were calculated for the velocity field and melt/solid

interface shapes discussed above. The results reported here were calculated

using a 18 x 34 mesh (2553 unknowns) embedded in the 8 x 16 grid used in the

melt for computing the velocity field. The accuracy of the calculations

of dopant concentration was assessed by computing the dopant mass balance

for the entire melt; this balance closed to within five percent for Rayleigh

numbers up to 1 x 104 . The finite element grids used here were inadequate

for dopant calculations at higher values of Ra.

Dopant fields computed for the segregation coefficient (k - 0.1) and

Schmidt number (Sc - 10) similar to gallium in germanium are shown in Fig. 8.

The almost parallel iso-concentration lines for Rayleigh numbers up to 10
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correspond to the one-dimensional solidification model. The concentration

field was deformed at higher values of Ra; flow downward along the axis

swept dopant from the crystal and induced radial segregation across the

surface of the crystal. The concentration field at Ra - 1 x 1C 4 had the begin-

nings of the uniform core of melt and steep concentration gradients along

each boundary which is consistent with the boundary-layer model for a

well-mixed melt. A large amount of radial segregation was present even

at this level of convection.

The radial variation of dopant composition at the interface is shown

on Figure 9 for the concentration fields in Figure 7. The change in

concentration across the interface evolved with increasing Ra from the

approximately one percent segregation caused by interface curvature at Ra - 0

to almost seventy percent of the mian value 1/k for the worst case of Ra - 1 x 103.

The radial variation in dopant decreased with the more intense flow motion

that corresponded to Ra - 104 . The maximum in radial se gregation with

increasing convection found here is consistent with calculations of Nikitan

et al. [14] for the growth of gallium-doped germanium in a horizontal boat.

The percent radial segregation, defined as

Ac =_	 Ic(O,h(0)) - c(A,h(A))l x 100	 ,
	

(21)

is plotted as a function of Ra on Figure 10 for segregation coefficients

between 0.01 and 0.9. In all cases, ac reached a maximum for the flow

corresponding to nearly Ra - 103 and decreased for larger values of Rayleigh

number. The value of the segregation coefficient set the mean concentration

in the melt at the interface and affected the level of radial segregation

in the crvstal. The exponentially decreasing concentration profile present



- 20 -

at low values of Ra extended further into the melt for smaller segregation

coefficients and made the concentration field more sensitive to convection.

Consequently the level of segregation ac was higher for lower k.

Changing the diffusivity of solute also had a marked effect on the

level of radial segregation, as is shown on Figure 11 by calculations of

Ac for a range of Schmidt numbers and all other parameters the same as

for the gallium-doped germanium syster. Increasin g Sc decreased the

length of the concentration gradient at the interface and caused higher

Peclet numbers (Pe M =_ Ra l/2Sc/Pr) at lower values of Ra. The concentration

fields for sample combinations of Sc and Pa are shown in Fi gure 12. At high

Schmidt numbers and Raylei gh numbers of 1 x 10 3 and above, the isoconcentra-

tion curves develop fingers oriented parallel to the melt/solid interface

that correspond to extremely rapid variation in composition within a distance

of the same order of magnitude at the thickness of the diffusion-layer for

(Ra - 0). This variation lead to large (over 100") radial segregation.

4.3 Calculation of Effective Segregation Coefficients

The complicated segregation patterns discussed in the previous section

create doubts as to the applicability of the simple "diffusion-layer" or

"boundary-layer" model fcr correlating axial segregation behavior. Our detailed

results for the velocity and dopant profiles put us in the rare situation

of being able to check this correlation. To do this, radially averaged

concentration profiles, defined as

... . _ r , ^1 ice " a^.ar ^,,ai ^Yl/*. a .rwa .. --
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c(z) = r A c(r,z) rdr	 (22)

0

were calculated and plotted for each set of Ra, k, and Sc; sample profiles

are shown in Figures 13 and 14 for Sc - 10 and Sc - 50, respectively. For

low Rayleigh numbers (0 < R < 1 x 10 2 ), these radially averaged profiles are

essentially the same as the concentration profiles predicted by one-dimensional

models which account only for the convection caused by crystal growth. A

region of nearly uniform average concentration c(z) = c 	 developed with

increasing Ra, as shown on Figure 13; here, the profile for Ra - 1 x 10 4 can

be divided into a region of steep dopant gradient adjacent to the crystal,

a zone of uniform concentration and a gradient zone caused by the fictitious

inlet condition at z - h(0) - 0.

The effective segregation coefficient appropriate for a true unsteady

Bridgman system with A - 0.25 was approximated as

	

keff - cs/cb = 1/c b	0	 (23)

where c s is the dimensionless average concentration across the crystal. Values

Of cb and 
keff 

computed from the finite element results presented 'n the last

section are summarized in Table IV.
-

If a diffusion-layer of thickness 6 =_6/L exists that separates the

crystal surface from bulk melt at concentration c b , the effective segregation

coefficient keff can be derived following Flemings [381 as

cs -	 k	
(24)

eff - cb	 k + (1-k)exp(-VR6/fl)

or in the dimensionless form used here as

. ^. . ^ . Vii: i/ " '^I' ....i ^./► i ..^+.,• ..
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keff *	 k	 (25)
k + (1-k)e yp(-c6 Pe Sc/Pr)

Rearranging eq. (25) yields an explicit relation for the diffusion-layer

thickness d:

6	
-	 Pr	 In	 k	 . (1 - keff)
	

(26)

	

PeScc	 I 
keff	

(1-k)

Values of d computed from eq. (25) with k eff calculated from the finite

element results are compared in Table IV to values 6 f measured from the

profiles of c(z). In each case 6 and 6 f are of the same order of magnitude

but may differ by as much as a factor of two. This result is not surprising;

within the distance 6 f from the crystal in the finite element calculations,

the velocity field is a combination of the growth velocity and a contribution

from natural convection. These two components are of the same order of

magnitude and it is the latter componEnt which causes the discrepancy between

6 and 6 f and which leads to radial segregation.

4.4 Variation of Thermal Conductivities: K = ks/kI

The ratio of thermal conductivities K = k s/kt is se'Aum unity for real

materials, as has been assumed in the calculations presented above. Metallic

semiconductors usually have higher conductivities in the r,^eit (K < 1), while

oxide systems usually have greater conductivities in the solid phase (K > 1).

We have examined the effect of varying the conductivity ratio by changing K

to 0.5 and 2.0. Temperature fields are shown in Figure 15 for these two cases

at Ra n 1 x 104 and are essentially the same as for lower values of Rayleigh

..  •..till  ^f^^,.. .., i
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number. Changing K from unity destroyed the axial symmetry in the temperature

Oield and displaced the interface from the center of the adiabatic zone. For

K n 0.5, the melt penetrated deeper into the ampoule and the interfac: was

convex toward the crystal. The interface was concave for K n 2.0 and located

above the center of the adiabatic zone. In each case, the deflections of the

interface were nearly ten percent of the mean location compared to the four

percent deflections calculated when the conductivity ratio was unity.

Flow fields are displayed in Figure 16 for Y. n 0.5 and 2.0 and Rayleigh

numbers between zero and 1 x 10 a . The changes in conductivities have little

effect on the flow pattern besides the small deflection in the flow near the

solidification interface needed because of the higher curvature of the crystal

surface. The concentration fields shown on Figure 17 are much more distorted

by the interface curvature; at low convection levels (0 < RA < 1 x 102 ) significant

radial segregation occurred, as marked by the intersection of iso-concentration

curves with the interface. The higher interfacial dopant concentrations appeared

where the interface had its largest positive curvature as measured from the

I
melt; this point shifted from the cen'erline for K n , 0.5 to the wall of the

ampoule for K n 2.0. The amount of radial segregation 6c caused solely

by interface curvature was 23% for K n 0.5 and 18: for K a 2.0.

Fluid motion caused by natural convection swept dopant from the center

of thL. interface towards the ampoule wall. For K n O.S. weak convection

decreased the radial segregation by stripping away the dopant peak caused

by interfacial curvature. Cellular convection in the melt increased the radial

segregation for the case with K n 2.0 by adding to the layer of dopant

already at the edge of the crystal. These results are summarized on

Figure 18 as a plot of to as a function of Ra. 	
3

mi

i
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4.5 Variation of Melt and Adiabatic Zone Lengths

The radial temperature gradients that drive natural convection in the

vertically stabilized Bridgman configuration are not physically modelled

by the Rayleigh number Ra : SgL3 (Th - Tc )/atv scaled with the length of the

ampoule. In fact. the structure of the flow should be independent of ampoule

length as long as the flow cell does not interact with the top (z - 0) of

0

the ampoule. The size of the radial

tional to that of the axial gradient

and so a more physically correct mea

Bg [(Th-Tc )/Lgr]R4

Ra ?	
atv

temperature gradients will be propor-

in the gradient zone (Th - -1c) /L9

sure of the buoyancy driving force is

Ra Ct/3 

L	 RT
	

(27)

\L /	 g
9

Calculations were performed for melt lengths of 2R, 3R and 4R, with the crystal

length and all other dimensionless groups held at the values of the base case

studied above; the overall ampoule lengths L were 4R, 5R and 6R, respectively.

j	 The intensity of the convection as measured by Ra r was held constant for each

aspect ratio of the melt. Temperature, velocity and dopant fields are shown

In Figure 19 for Ra r - 1.5E25, which corresponds to Ra - 1 x 10 3 for the base

case A n 0.25. It is clearly seen that these three fields are essential'y

identical for all three aspect ratios. The aspect ratio A - 0.25 is adequate

for modelling much longer ampoules.

Th., calculations presented in Sections 4.1 - 4.3 show that radial

segregation results. from the interaction of the cellular flow driven by the

radial temperature gradients at the edge of the adiabatic zone with the

concentration gradient adjacent to the melt/solid solid interface.

Pence, the length L  = L
9
A of the adiabatic zone should be an important
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variable in determining the extent of this segregation. Calculations were

performed for an ampoule with aspect ratio A - 1/8 and adiabatic zones with

dimensions L 9 of 1/8 (same as in Sections 4.1 - 4.3), 114, 3/8, and 1/2.

Samples isother", streamlines and concentration fields are shown in

Figure 20 for Ra - 8.0 x 103 and the thermophysical properties corresponding

to the gallium-doped germanium system listed in Table II. As the length

of the gradient region was increased the center of the cellular flow moved

with the edge of the adiabatic region and was located farther from the melt/

solid interface. For the longest gradient zone L g n 112 (see Fig. 20d) the

t
bulk of the convection occurred beyond the concentration gradient emanating

from the melt/solid interface and the concentration field there was only

slightly disturbed by the flow. Very little radial segregation is expected

for these conditions. The percent radial se gregation Ac is plotted on Fig. 20

i
as a function of Rayleigh number	 fL,r the four values of L 9 listed above.

Fixing Ra and increasing L 9 correspon%s experimentally to holding

constant the ov!rall temperaturt difference (T - T ) and changing only

i	

h	 c

the length of the adiabatic zone. This procedure decreases the temperature

gradient in the melt and weakens the flows, as shown on Fig. 20 by the

increased spacing of the isotherms and by the decrease of the circulation

Amax with increasing l 9 . Calculations with constant intensity of the

convection requira fixing the radially-scaled Rayleigh number Ra r (see

eq. 27). Curves of constant Ra r are shown on Fig. 21 and demonstrate

the decrease in radial segregation with increasing L g . At moderate convection
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levels the adiabatic zone can be made lonq enough that the cellular flow

does not Interact with the dopant diffusion-layer adjacent to the crystal.

The minimum length for :hit coupling will he strongly dependent on the value

of the diffusivity (Schmidt number), which sets the length of the concentra-

tion gradient; see Fig. 10.

Ir
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5. VERTICALLY DESTABILIZED CONFIGURATION

When the melt is positioned below the crystal the vertical temperature

gradient leads to unstable density stratification which enhances convection.

Calculations were performed for the destabilized geometry over a range of

Rayleigh number Ra with the thermophysical properties listed in Table II.

The size of the ampoule was taken to be the same as the base case for

the stabilized system, i.e. Lg - 1.0 and A - 1/4. For Raylei gh numbers up

to Ra - 1 x 10 5 , the temperature fields for the destabilized configuration

were indistinguishable from the one for pure conduction (Ra - 0; see Fig. 3a)

and._ so are not shown here. Streamlines computed for four representative

values of Ra are displayed as Fig. 22.

The direction of the flow in the destabilized system was opposite that

for the stabilized configuration and had qualitatively different effects on

melt/solid interface shape and solute segre gation. Melt moved upward along

the sidewall of the ampoule, turned inward at the melt/solid interface,

and fell along the centerline of the melt. As in the stabilized geometry,

th,•ee regimes of the flow were located with changing Ra. Cellular fluid

motion developed near the centerline for low values of Rayleigh number

and spread toward the ampoule wall with increasing Ra. The center of the

cell was positioned near the edge of the adiabatic zone, indicating that

the radial temperature gradients at this edge were influencing the flow.

At Ra - 1 x 10 5 (see Fig. 22d) the destab`lizing axial temperature gradient

was controlling the flow and the cell had migrated downward in the ampoule.

Calculations in a similar flow geometry and low Prandtl number [31] have

indicated that the destabilized flow will separate from the sidewall at
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higher Rayleigh numbers.

Melt/solid interface shapes are shown in Fig. 23 for the flow fields

given in Figure 22. Again, conduction dominated the heat flux in the melt

near the surface of the crystal and the shape of the solidification isotherm

was only slightly altered by convection. The shape shown for Ra between 0

and 1 x 103 was the same as shown for the stabilized confi guration and low

Rayleigh numbers in Fig. 6. The hot melt rising along the ampoule wall

pushed the interface higher into the adiabatic zone at Ra = 1 x 10 3 and

above and resulted in interfaces with convection bein g "flatter" than the

shape corresonding to Ra - 0. The maximum hei ght of the interface for Ra =

1 x 105 occurred off the centerline of the ampoule.

More dramatic differences are found by comparing radial dopant profiles

for the two geometries. Dopant fields and interface distributions are shown

in Figs. 24 and 25 for the parameters listed in Table II. The flow upward

to the interface swept dopant from the outer edges of the cr ystal to the

center of the ampoule. This led to interfacial concentrations that were

highest at the center of the crystal, see Fig. 24. The amount of radial

segregation across the crystal decreased for Ra - 1 x 10 4 , just as in the

case of the stabilized configuration. The percent radial se gregation expected

in the stabilized and destabilized geometries are compared directly on Fig. 26.

The maximum in radial se gregation is twenty percent less for the destabilizing

configuration than for the stabilized system.

J
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6. DISCUSSION

The coupled analysis of natural convection, melt/solid interface shape

and dopant segregation in small-scale crystal growth systems is complicated,

but is no longer impossible, because of the advent of new finite-element

methods. The detailed pictures of the field variables and solidification

front for the vertical Pridgman system studied here give new insights into

the role of convection in setting the effective segregation between the bulk

melt and crystal and the radial se gregation in the crystal.

r
For moderate levels of convection, the sta gnant-film or diffusion-layer

model is a gross over-simplification of these interactions. Diffusion-layer

i
thicknesses d determined from ea. (26) and experimental data are, at best,

an empirical fit to the effective segregation coefficient for the crystai/melt

system. The comparison in Section 4.3 demonstrates that, although the radially

averaged diffusion-layer thickness determined from the finite element simulations

and eq . (26) are of the same order-of-magnitude, the actual concentration gradient

adjacent to the crystal is far from radially uniform. As much as sixty percent

radial segregation can exist. Only detailed calculations of the exact interaction

of fluid flow and the dopant profile adjacent to the interface can be used

to estimate the level of radial segregation in the crystal.

Our study of a prototype Bridgman system gives qualitative understanding

of fluid flow and dopant segregation in actual growth systems and will serve

as the starting point for more refined calculations aimed directly at comparison

with experiments in a well-characterized small-scale system [36]. In these

calculations, the ratio of thermal conductivities K between melt and crystal

I

1
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and the length of the gradient zone La have emerged as imoortant design

parameters for determining interface shape and radial se gregation. The

value of K sets the shape of the interface and determines the qualitative

behavior of the radial se gregation with increased convection. The length

Lg. sets the degree of interaction between the cellular flow and the

concet..ration gradient adjacent to the interface. For long enou gh gradient

zones and moderate convection levels, the flow causes little radial segrega-

tion; see Fig. 21.

	

i	 Accurate comparisons with experimentally determined interface shapes

and radial and axial dopant profiles will require the inclusion of the

temperature variations of key thernphysical properties, such as the melt

and solid conductivities and the density of the melt. Most of these variations

are unknown. The thermal interactions between the ampoule and the surroundings,

e.g. heat capacity and conductivity of the ampoule, will also have to be

more accurately accounted for to correctly model racial temperature gradients

in the system.

The slow translation of the ampoule has little effect on the temperature

and velocity fields, when the ampoule is sufficiently long; however, the average

concentration of dopant in the melt will increase slowly with time. For con-

vection levels intense enough that a plateau in c(z) forms in the melt (see

	

J	 Fig. 13), this transient can be studied by an unsteady dopant calculation

with fixed melt length and steady fluid flow, but with a time varying inlet

	

j	 concentration determined by an overall mass balance. For very low convection

	

a	 levels and high diffusivities (low Sc) where the concentration gradient extends

to the end of the ampoule, fully transient calculations takin g into account

i
the length of the melt will be necessary. Efficient numerical methods presen{'y

NZ
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exist only for one-dimensional solidification problems [39] and are being

extended to two-dimensional simulations.

The most critical issue not addressed in this paper is the transition

from the steady-state flow patterns predicted here to time-periodic flows

observed in some experiments [5, 29]. Mathematically. these transitions

occur as Hopf bifurcations from the steady flows and have been predicted

theoretically by computer-aided bifurcation analysis combined with finite-

element calculations [40] for low Prandtl number melts in the horizontal

boat geometry studied experimentally by Hurle et al. [41]. Simulation

of crystal growth in the time-periodic regime re quires time-dependent

solution of the Bousinesq equations as performed by some researchers

[14, 42] without the interaction with the melt/solid interface. Fully

transient calculations are no panacea. Besides beina extremely expensive,

their accuracy is difficult to assess. The loss-of-existence of steady

solutions shown in Section 4.1 for crude finite element approximations

would be manifested as time-fluctuating flows in transient calculations.

As is the case here, refined transient calculations may lead to steady

velocity and temperature fields.
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FIGURE CAPTIONS

Table I.	 Dimensionless Parameters and Representative Values
for the Gallium-Doped Germanium System.

Table II.	 Material Properties Characteristic of Gallium-Doped
Germanium.

Table III.	 Accuracy of Finite Element Calculations of Flow and
Temperature Fields.

Table	 IV. Comparison of Effective Segre gation Coefficients
Predicted by Finite Element Analysis with Diffusion-
Layer Model, Eq.	 (26).

Figure 1. Geometry of prototype vertical Bridgman growth system.

Fi gure 2. Sample finite element mesh for computing velocity and
temperature fields and melt/solid interface shape.

Figure 3. Sample flow fields for vertically stabilized RridaTar

system with Rayleigh numbers between 0 and 2.5 x 106.
Streamlines are spaced at equal intervals between the
maximum (or minimum) value for the cell and zero.

Figure 4. Maximur+ streamfunction fl—ax as a function of Ra for

vertically stabilfzed Bridgman system.

Figure 5. Sample temperature fields for the vertically stabilized
Bridgman system with Rayleigh numbers between 0 and 2.5 x 106.

Figure 6. Melt/solid interface shapes for the flow and temperature
fields shown in Figs. 	 3 and 5.

Figure 7. Change of structure with Payleigh number of flow families for
three finite element meshes, as represented by the
Nusselt number Nut.

Figure 8. Dopant concentration fields for flow fields shown in
Fig.	 3;	 k n 0.1	 and Sc - 10.

Figure 9. Variation of interfacial dopant concentration with
Rayleigh number, k - 0.1 and Sc - 10.

Figure 10. Percent radial segregation as a function of Rayleigh
number and segregation coefficient for the vertically
stabilized Brio;man system; Sc - 10.
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Figure	 11. Percent radial	 segregation as a function of
Rayleigh number and Schmidt number for the
vertically stabilized Bridgman system; k - 0.1.

Figure 12. Dopant concentration fields for three Schmidt
numbers as a function of Rayleigh number; k - 0.1.

Figure 13. Profiles of radially averaged dopant concentration
for three values of Ra; k n 0.1 and Sc - 10.

Fi gure 14. Profiles of radially averaged dopant concentration
for three values of Ra; k - 0.1 and Sc - 50.

Fi gure 15. Sample temperature fields for vertically stabilized
Bridgman systems with Ra - 1 x 10 	 and thermal conduc-
tiv i ty ratios of (a)	 K - 2.0 and	 (b)	 K - 0.5.
All other parameters are the same as listed in Table I.

Figure 16. Sample flow fields for vertically stabilized Bridgman
systems with thermal conductivity ratios of (a-d)
K - 0.5 and (e-f) 	 K - 2.0.

Figure 11. Dopant concentration fields for flow fields shown in
Figure 16; k - 0.1	 and Sc - 10.

Figure 1E. Percent radial segregation as a function of Rayleigh
number and thermal conductivity ratio; k - 0.1 and
Sc - 10.

Figure 19.	 Effect of melt length on temperature, velocity and
dopant fields for Ra r - 1.5E25 , k n 0.1 and Sc - 10.

Figure 20.	 Effect of the length of the gradient zone L on
temperature velocity and dopant fields for
Ra -  1 x 10	 k- 0.1 and Sc a  10 .

Figure 21.	 Effect of the len gth of the gradient zone L on
the percent radial segregation ac; k - 0.'! ind
Sc - 10.

Figure 22.	 Sample flow fields for vertically destabilized
Bridgman system with the thermophysical properties
given in Tables I and .[I.

Figure 23.	 Melt/solid interface shapes for the flow fields
shown in Fig. 22.

Figure 24.	 Dopant concentration fields for flow fields shown
in Fig. 22; k n 0.1 and Sc - 10.
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Variation of interfacial doFant concentration
with Raylei g h number; k n 0.1 and Sc a 10.

Comparison of percent radial se gregation for
stabilized and destabilized Bridgmar systems;
k n 0.1 and Sc • 10.

Figure 25

Figure 2E:
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Table I. Dimensionless Parameters and Representative
Values for Gallium-Doped Germanium System

GROUP DEFINITION VALUE

Rayleigh Number Ra s 9g (Th - Tc )L3/aRv 0 - 107

Prandtl Number Pr = v/aL 0.01

Peclet Number Pe = VS L/aR 0.01

Conductivity Ratio K =_ k s/kt 1.0

Stefan Number S = 
a f/pzcp(T

h - Tc ) 1.0
t

Schmidt Number Sc = v/D 10

Thermal Diffusivity Y = aS/a1 1.0

Ratio

Density Ratio a = ps/oR 1.0
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Table II. Material Properties Characteristic of Gallium-Doped Germanium

Property Value

Thermal conductivity of melt (k 
L ) 0.17 W/K cm

Thermal con4;jctivity of solid (k 
S ) 0.17 W/K cm

Heat capacity of melt (cPL) 0.17 J/gm K

Heat capacity of solid (cp	 )
s

0.17 J/gm K

Density of melt	 ( pd S.E 0/cm3

Oensity of solid	 (o S) 5.E g/cm3

Melting temperature (T.) 956°C

Kinematic Viscosity of Melt (v) 0.13 cm2/sec

Heat of fusion (AM S) 506 J/gm

Thermal Expansion Coefficient (B) 0.25 x	 10	
3	

(K)-1

Diffusivity of Ga in Ge (fl) 1.3 x 10-4	cm2/sec

Segregation Coefficient of
Ga in Go	 (k) 0.1

— --	 --	
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Ì	 I
1	 ^

85101	 —'

	

^	 I

	

^	 I

^	 ^	 1

8500	 1	 1	 1	 i
1.0	 1.5	 2.0	 2.5	 10	 3.5

RAYLE IGH NUMBER Ro (x 10 0 )

U)

Z
w
U
Q
U-

y

H
2

Figure 7
C hQ% amJ Bro,ay



A

ORIGINAL PAGE iS
	 Z

OF POOR QUALITY

3
lq

Q
	 CA

4
	

OD

0
	 J

0
N

Mn
O
x

1

M
N	 fn	 a 	 _mmmd

N
O	 O

O

N

O
O

J

H
F- O	 N
J -	 ^
W x

Im



t

r
	 -.o-- r

ORIGINAL PAGE 19
OF POOR QUALITY

,

e

13

12
r

v
V

v II
Q

w

? 10

Q

wJ
O 9
Ir
CL

O
Q 8
GCH
w
Z T
OV

k =0.1
Pr=0.01
Pe= 0.01
A =0.25

Ro =102

Ro=104

Ro=103

61

0.0
	

0.05	 0.10	 0.15	 0.20
	

0.25

DIMENSIONLESS RADIUS, r

Fl
C{n o+^ p„,^ Q rc



to

ORIGINAL PAGE
OF POOR QUALITY

7C

0
0

6c

z
0
p 50—

Lij 40—

30—

LAJ

Z 20 —uj

10

00
10	 1c,	 103	 104	 10:1

P.'YLEIGH Num-BER Re

Fiqure 10

C-vl" O.-Vi IBMW84



160

lap

8
^'	 t2C
u

^	 d

Z
1 101

^	 Q

W
¢
w 8N
J
Q
O
Q 6

W
C7
Q
H ^
Z
W
u
Q
Wa

i

ORIGINAL P^
►G` ^•

OF 

POOR QO,L'"C

p	 i	 Iv	 Iv	 "-
RAYLEIGH Nu':3ER Ro

S qurc 11

C.U&%g o4k( &010N

r-



ORIGINAL PAGE 13

OF POOR QUALITY

Rc=0	 Ron Ix102	 ROaIx103	 Rot Ix104
2

4

Sc • SO

2	 2	 2

- 

1^
4

6
Sc • 30

	

2	 2	 f24

4
6

Sc- 20

	

2	 6
e

4

2	 4
6

	

Sc = 10 2	 8
2

	

4	 14
4

1

I

F cgu re 1 a	 {
Chc^ s aMd PJrcwN



w I G
^u

Z o
O
H
^ e
z
w 7
vz
O
v 6
Hz
a 5
O0
0 4
w
c^

s 3
w
G 2
}
JJ
G	 '
0
Q= 0

ORIGINAL PAG+" Imo'

OF POOR QUALITf

0	 0.125	 0.250	 0.3'5	 0.5

DIMENSIONLESS DISTANCE FROM INTERFACE,z-h(o)

'ismse 13

Chang oy. j groWN

-



ORIGINAL PAGE Ise
OF POOR QUALITY

IC

v
z c
O
t~

8

z
U

v 6

W 7

O
...........

	 R0=iO4	 I

z
a 500
C 4
W

c 3
W	

R02103
Q 2
}	

I R 0=0,102J
J 1

Q

D
Q

^ C

Sc = 50

Pr it 0.01

0	 0. i 25	 0.250	 0.3% 	 0.5

DIMENSIONLESS DISTANCE FROM INTERFACE, z-h(r)

Fqu.e 14

Chorvg ally 1 ma 4



MELT/SOLID

_ INTERFACE

0

0.
0.

0.7

0.6

0.5

1	 ^

1

s	 YL'
	 /-

tiFi1G':f'.A^ ` fir'" !•^
OF POOR QUALIn

(0) K = 2.0
	

(b)K=0.5

a=1
	

e=1

F, c)um IS

CAN oAA3 G A 6rotz N



l7

(b) Ra s Ix10 2 	(e)Ra -1x103	 (d)Re91m104

I

I nAI

I^rnox'-6.41xi0-'

I

I

(a) Ro•0

ORIGINAL PAGE IS
OF POOR QUALITY

(4) Ro-0 (f) RC, Ix10 2 	 (g)Roa1x103	 (f) Ra•Ix10"

----

I	 I

I

I

6̂5-,

/	 I
-9,18 1 10-4	-7.62 x 10-3

9^rc (6
Gn	 d.v^ 4 ro w Aj



rn
0
x
11

0

w
Apit

ORIG' AL PAGE 14 2
r- C.0

^- v

T

N0
x

11

M^
li

0
r

•i

0

1

O

V

in0
x

O

V

N0
IR

11

O

r

e!^

of=

awit
J

W
} CE

vv V
w
z

N	 Q



ORIGINAL PAGC I.S
OF POOR QUALITY

0O 60'

U
Q
Z 50
0

Q
t7
W 40
2
C^
WN

C 300
Q

LJ
o 20
a

Z
W
V
W 10
CL

• n I

0.5

10 4	105

C

0	 1	 10	 102	 10;

RAYLEIGH NUMBER Ro

F(gture 19
Chang W j (I rows



ORIG;NAL PAGE i9
^OF POOR QUALITY

pm
.A

4

-to

z L---
O
H
Q
t~z	 I
W

O	 J
W

LL v

I
J
1

o L--
u
z

nU.

Q
uj
^	 J
V~9

LLJ

 ̂

W

F-
Q

a

W
F—

_J -4

4

4

4

i

`lei=



L9= 2RIR

c

Lot 3R

12

L98 4R

C

logo

p e,, ,jr r,l

()F pGCFZ QUALITY

i,

1=
Fiopxe

C-tA " 0^4 IS rG u; oJ



x

d
Z 50
O

Q
c^

w 4C
w
U)

a 30
0
Q
oC

cD 20

H

W
V
W 10
CL

L9 = 0.125

31.2

I

5.6

I

1 a

q

ORIGINAL PAGE iS
OF POOR QUALITY

(	 ) CONSTANT L9

(--) CONSTANT Rai

O 60
O

1561 i
^	 I

jRar = 312

I

I I L9 = 0.25

	

I	 j

	

l	 I

I

•I

L9 =0.375

1	 1
1

L9 =0.500

01
10o
	

10 1 	102	 103	 104
	

103

RAYLEIGH NUMBER, Ra

ClAws



4.35 x10-2

I

I

1	 '

ORIGINAL PAGE 19
OF POOR QUALITY

(a) Ran 
	

(b) Ra w Ix 103
	

(e) Ro • I x 104
	

(d) Ro m Ix105

I

M
Pi qurc ZZ

C -6̂ 9 M144 8 row ►^

T	 .^



0.513

0.512

w

Z 0.511
E
m
0
0

0.51C

X

0.50°

`;' is
pooR QUALITI

0	 0.05	 0.1	 0.15	 0.2
	 025

PADIAL COORDINATE r

S Sure



V
O
;

0
M

In
O
sc

0

W
J
Z

O

0

GRIGINAL P
OF POOR QUALITY

^ o
L
^ z



Pr = 0.01
Pe = 0.01
A =0.25

r ^

Obi ,jNAL i' ,Gl i9
OF POOR QU F' '''`,

16

U
z 14

O
H
Q

12
z
w
Vz
Ov IC

w
a
w
z

6 L_	 J—	 —	 ____-

0.0	 0.05	 0.10	 0.15	 0.20	 0.25

RADIAL COORDINATE, r

1

Fiegturg, 25

^0^ ^ UrC e

i

4

i



Ow.^

OLIZED
►SAN

STABILIZED
BRIDGMAN

I	 ^

OR IGINAL PAG ► (`
OF POOR QUAI n

70

1

k - 0.1
Sc-- 10

(-)60

d

z

50
Q
w
[C

w 40
0
J
Q

Q 30
a:

w

z20
w
V
!z
W
a_ 10

0

0	 1	 10	 102	 103
	

104	 105

RAYLE^ GH NUMBER , Ra

Ckaj a i Brow w
F^4ure 24

OS.AN^ .- ...,.


	GeneralDisclaimer.pdf
	0117A02.pdf
	0117A03.pdf
	0117A04.pdf
	0117A05.pdf
	0117A06.pdf
	0117A07.pdf
	0117A08.pdf
	0117A09.pdf
	0117A10.pdf
	0117A11.pdf
	0117A12.pdf
	0117A13.pdf
	0117A14.pdf
	0117B01.pdf
	0117B02.pdf
	0117B03.pdf
	0117B04.pdf
	0117B05.pdf
	0117B06.pdf
	0117B07.pdf
	0117B08.pdf
	0117B09.pdf
	0117B10.pdf
	0117B11.pdf
	0117B12.pdf
	0117B13.pdf
	0117B14.pdf
	0117C01.pdf
	0117C02.pdf
	0117C03.pdf
	0117C04.pdf
	0117C05.pdf
	0117C06.pdf
	0117C07.pdf
	0117C08.pdf
	0117C09.pdf
	0117C10.pdf
	0117C11.pdf
	0117C12.pdf
	0117C13.pdf
	0117C14.pdf
	0117D01.pdf
	0117D02.pdf
	0117D03.pdf
	0117D04.pdf
	0117D05.pdf
	0117D06.pdf
	0117D07.pdf
	0117D08.pdf
	0117D09.pdf
	0117D10.pdf
	0117D11.pdf
	0117D12.pdf
	0117D13.pdf
	0117D14.pdf
	0117E01.pdf
	0117E02.pdf
	0117E03.pdf
	0117E04.pdf
	0117E05.pdf
	0117E06.pdf
	0117E07.pdf
	0117E08.pdf
	0117E09.pdf
	0117E10.pdf
	0117E11.pdf
	0117E12.pdf

