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SUMMARY 

This paper assesses the state o f  the art in substructure coupling for 
dynamic analysis. A general formulation, which permits all previously de- 
scribed methods to be characterized by a few constituent matrices, is developed. 
Limited results comparing the accuracy of various methods are presented. 

INTRODUCTION 

Analysis of the response of a complex structure to dynamic excitation is 
usually accomplished by analyzing a finite element model of the structure. 
Since the finite element model may contain thousands of degrees of freedom, and 
since the structure may consist of several substructures which are designed and 
fabricated by different organizations, it is desirable to have a method of 
dynamic analysis which permits the number of degrees of freedom of the dynamic 
model to be reduced and which also allows as much independence as possible in 
the design and analysis of substructures-. The names substructure coupling and 
component mode synthesis have been applied to the process of partitioning a 
structure into substructures, or components, and describing the physical dis- 
placements of the substructures in terms of generalized coordinates which are 
the amp1 i tudes of predetermined substructure modes. A number of substructure 
coupling methods have been proposed. The goal of most of these has been to 
permit analytical determination of system natural modes and frequencies from 
given finite element models of the structure. To a lesser extent, the use of 
exper i menta 1 1 y -de termi ned substructure data to syn t hes i ze mat hema t i ca 1 model s 
of structures has been considered. 

One classification of substructure coupling methods is based on the condi- 
tions imposed at the interface between one substructure and the adjoining sub- 
structures when mode shapes are determined for the substructure. One class is 
called fixed-interface methods, and a second is called free-interface methods. 
Related to the latter is a class which may be called loaded-interface methods. 
Finally, some consideration has been given to permitting arbitrary interface 
conditions which may be a combination of the above three types. Such a method 
may be called a hybrid method. 

The following classes o f  modes are used in defining substructure general- 
ized coordinates: 
body modes. 
paper. 

normal modes, constraint modes, attachment modes, and.rigid- 
These are defined in greater detail in a later section of the 
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SYMBOLS 

The principal defining equations are given in parenthesis after the 
definition of each symbol. 

A 
B 
C 
f 
F 
G 
k 
K 
L 
m 
M 
P 
9 
R 
T 
T1 
T2 
U 

X 
ii 

interface equi 1 i brium matrix (29) 
displacement compatibility matrix (29) 
combination of A and B (33) 
substructure force vector (1 ) 
equivalent force vector (15) 
flexibility matrix (19) 
substructure stiffness matrix (1 ) 
system stiffness matrix (30, 37, 45) 
Lagrangian (26) 
substructure mass matrix (1 ) 
system mass matrix (30, 37, 45) 
substructure generalized coordinate vector (22 
system general ized coordinate vector (31 ) 
inertia relief matrix (14) 
substructure kinetic energy (21) 
substructure transformation matrix (22) 
system transformation matrix (31 , 36) 
substructure potential energy (21 ) 
substructure physical coordinate vector (1 ) 
Lagrange mu1 tipl ier vector (26) 
free-interface or  loaded-interface normal mode matrix (7) 
substructure generalized stiffness matrix (24, 25) 
substructure eigenvalue, eigenvalue matrix (2 , 3) 
substructure generalized mass matrix (24, 25) 
Lagrange mu1 tipl ier vector (26) 
general i zed coordinate (27) 
Lagrange multiplier vector (38) 
fixed-interface normal mode matrix (4) 
modified attachment mode matrix (20) 
unmodified attachment mode matrix (13, 17) 
constraint mode matrix (1 1 ) 

25) 

Subscripts and Superscripts: 

d - dependent coordinates (32) 
i non-interface (interior) coordinates (1) 
j interface (J-uncyion) coordinates (1 ) 
k - kept coordinates (18) 
R - 1 inearly-independent coordinates (32) 
r - rigid-body modes , temporary constraints (14, 15) 
u unrestrained coordinates (15) 
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HISTORICAL REVIEW 

The following i s  a brief review of  the development of a number of sub-  

Hurty (refs. 1 , Z )  developed the f i r s t  substructure coupl ing  method capable 

structure coupling methods: 

of analyzing substructures w i t h  redundant interface connection. 
face normal modes, rigid-body modes and redundant constraint modes are used 
t o  define substructure general ized coordinates. 

Fixed inter- 

Bamford (ref.  3) introduced attachment modes, and developed a hybrid 
substructure coup1 i n g  method. 

Craig and Bampton (ref. 4 )  and Bajan and Feng (refs. 5,6) modified Hurty's 
method by pointing out  t h a t  i t  i s  unnecessary t o  separate the set  of constraint 
modes in to  rigid-body modes and redundant constraint modes. 

Goldman (ref. 7) and Hou (ref. 8) developed methods which employ free- 
interface substructure normal modes. They differ in the technique used t o  
effect coupling of the substructures, as will be explained in a subsequent 
section. 

Benfield and Hruda (ref. 9)  introduced two new concepts: they employed 
Guyan reduction (ref.  10) t o  determine interface loading, and they used a 
coupling strategy which differs slightly from strategies used by previous 
authors. 
f ield and Hruda: 
constrained with interface loading. 

These features serve as the basis for four methods described by Ben- 
free-free, constrained, free-free with interface loading, and 

MacNeal (ref.  11)  developed a hybrid method which allows some substructure 
interface coordinates t o  be constrained while others are free. 
gested the use of statically derived modes t o  improve the representation of 
the substructure motion. 

provided for  arbitrary mass loading of interface poin ts .  

effects of modes truncated from the final, set  free-interface substructure 
normal modes. 

He also sug- 

Goldenberg and Shapiro (ref.  1 2 )  employed a method similar t o  H O U ' S ,  b u t  

Rubin  (ref.  13) extended MacNeal ' s  method t o  include second-order residual 

Kuhar and Stahle (ref.  14)  *introduced a dynamic transformation which 
approximates the effect of modes which are truncated from the final se t  of 
system generalized coordinates. 

face mode sets which he calls "the method o f  attachment modes" and "the method 
of constraint modes." The former se t  i s  combined w i t h  both free-interface 
normal modes and w i t h  fixed-interface normal modes t o  form system coordinates. 
The la t te r  i s  combined only w i t h  fixed-interface normal modes. 

In a recent paper Hintz (ref.  15) describes two statically complete inter- 

In reference 16 Craig and Chang describe three methods for reducing the 
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number of interface coordinates in the f i n a l  system equations obtained by the 
Hurty method o r  the Craig-Bampton method. 
provide examples of substructure coupling based on the methods of MacNeal and 
Rubin .  

In reference 17 Craig and Chang 

The previous references are primarily concerned w i t h  the use of substruc- 
ture coupling methods i n  the analytical determination of modes and frequencies 
of complex structures. 
tal data as i n p u t  t o  coupling procedures. 
nature: 

Several studies , however, explore the use of experimen- 
The following studies are of this  

Klosterman's thesis (ref.  18) provides a Comprehensive study of the exper- 
imental determination of modal representations of structures including the use 
of these models in substructure coupling. 
substructure coup1 ing by two methods which he cal ls  "component mode synthesis'' 
and ''general impedance method" respectively. The former closely para1 le l s  
Bamford's work. In reference 20 Klosterman and McClelland introduce "inertia 
restraint" and outline a coupling procedure that appears t o  be especially 
suited t o  coupling two substructures where one i s  represented by modes and the 
second by a finite-element model. 

In reference 19 Klosterman t reats  

Kana and Huzar (refs.  21 $22) developed a semi-empirical energy approach 
for predicting the damping of a structure in terms of damping of substructures. 

Hasselman (ref .  23)  employs a perturbation technique t o  describe substruc- 
ture damping and discusses, in a general way, coupling of substructures u s i n g  
either free-interface modes o r  fixed-interface modes. 

Two symposia on the topic of substructure coupling have been held (refs. 
24,25). 
symposia, are references 26 and 27. 

Survey papers of particular importance, which were presented a t  these 

A GENERAL FORMULATION OF SUBSTRUCTURE COUPLING FOR DYNAMIC ANALYSIS 

The substructure coupling methods mentioned in the preceding section may 
be described by a single comprehensive formulation. Differences i n  the methods 
result from the use o f  different mode sets t o  describe substructure generalized 
coordinates and different methods of enforcing compati b i  1 i t y  of substructure 
interfaces. We will first define the mode sets  used in representing the sub- 
structure physical displacements i n  terms of substructure generalized coordi - 
nates. Then, us ing  the Lagrange multiplier method, we will show how enforce- 
ment of compati bi 1 i t y  a t  substructure interfaces leads t o  system equations of 
motion. Finally, the vectors and matrices which define the various methods 
are tabulated. 

Definition of Mode Sets 

The physical displacements of each substructure are represented i n  terms 
of substructure general ized coordinates t h r o u g h  the use of various "assumed 
modes," including normal modes of the substructure and certain s t a t i c  deflec- 
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t ion modes. 

The equation of motion of  a substructure, when connected t o  other sub- 
structures and executing undamped free v i b r a t i o n ,  may be written i n  the form 

Fixed- Interjace Normal Modes 

Fixed-interface normal modes are obtained by setting x j  : 0 and solving 
for  the free-vibration modes of the substructure. 
eigenvalue probl em 

Equation (1 )  reduces t o  the 

( k i i  - A 2 m i i )  xi  = 0 (2 1 
The resulting substructure eigenvalues (frequencies) form a diagonal matrix 

(3 )  
2 A f d i a g  ( A i  A; . . .  AH^) 

and the corresponding normalized eigenvectors (mode shapes) form the modal 
matrix 

(4) 
@il  @ i 2  @ i N i  
0 0 . . .  0 
- --------- 

where N i  is the t o t a l  number of substructure interior coordinates. 

Free-Interface Normal Modes ; Loaded-Interface Normal Modes 

Free-interface normal modes are obtained by setting f .  E 0 i n  equation (1) 
T h u s ,  

J 
and so lv ing  for the resulting modes and frequencies of the Substructure. 

( k  - A 2 m )  x = 0 (5) 

The matrix of  eigenvalues i s  

A E d i a g  ( A i  A; ... A i )  
where N = N i  + N j  is the t o t a l  number of substructure degrees of freedom. 
Since the structure may be unrestrained, there may be Nr rigid-body modes. 
normalized eigenvectors form the modal matrix 

The 

(7) 
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Several methods (e.g., refs. 9,12) employ loaded-jnterface normal modes. 
These are obtained by augmenting the interface mass and/or stiffness in equa- 
tion (5) to give 

m.. 
(8) [~~ ki (kjj j + ~ j j ~  ~ : )  (qj + ~ j j ~ ]  {l;} = {I} 

- 
and  ti^ are the interface "loading" matrices. The symbol 0 will be used kj j j j  

for the modal matrix corresponding to equation (8). 

Constraint Modes 

To complement fixed-interface substructure normal modes a set of con- 
straint modes may be employed (e.g., refs. 2,4). A constraint mode is defined 
by imposing a unit displacement on one physical coordinate and zero displace- 
ment on the remainder of a specified subset of the substructure physical coor- 
dinates. 
applying a Guyan reduction to all interior coordinates; i.e., the mass is 
neglected in the top row-partition of equation (1) and unit displacements are 
imposed successively on all junction coordinates giving 

The procedure employed to obtain constraint modes is equivalent to 

Ckii k..] 1 J  [::;I = 0 (9) 

Thus, the N j  constraint modes which form the columns of the constraint mode 
matrix Y are obtained by solving the (multiple) static deflection problem 

k.. yij = -kij 
11 

Then, 

Y f [ ~ ~ ~ ]  
If the substructure is unrestrained, Y will contain Nr linearly indepen- 

dent rigid-body modes. 
interface normal modes are orthogonal with respect to the stiffness matrix k. 

As noted in reference 4, constraint modes and fixed- 

Attachment Modes 

Attachment modes are"static"modes which may be used to complement free- 
interface substructure normal modes (e.g., refs. 3,11,15,18). An attachment 
mode is defined by imposing a unit force on one physical coordinate and zero 
force on the remainder o f  a specified subset of substructurkphysical coordi- 
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nates. Attachment modes will be described first for restrained structures 
(for which k is non-singular) and then for unrestrained structures. 

Attachment modes for restrained substructures.-Attachment modes for a 
restrained substructure are obtained by solving the multiple static deflection 
problem 

Then the attachment mode matrix is defined by 

Attachment modes can be expressed as linear Combinations of free-interface 
normal modes. However, in a later section when the normal mode set is trun- 
cated, the attachment modes will be modified so that they are orthogonal to the 
kept normal' modes. The modified attachment mode set will be called X. 

Attachment modes for unrestrained substructures. -For an unrestrained sub- 
structure, attachment modes may be obtained by using rigid-body inertia forces 
to equilibrate applied forces and by temporarily imposing a set of Nr nonredun- 
dant constraints. Let 0, be the set of Nr (normalized) rigid-body modes of the 
substructure and let 

T 

R =  I -mo 0' r r  

be the inertia relief matrix (ref. 15). 
obtained from 

Then, the attachment modes may be 

where r stands for the Np restrained interior coordinates and u stands for the 
Nu = Ni - Nr unrestrained interior coordinates. From equation (15 )  
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~ u u  k j u  :y:l 
Final ly  , 

T Rigid-body modes may be removed from the X matrix by premultiplying i t  by R . 

Truncation of Mode Sets 

One of the most significant features of substructure coup1 i n g  techniques 
i s  tha t  they permit the number of degrees of freedom of a system t o  be reduced 
i n  a systematic manner through truncation of the mode sets which define the 
generalized coordinates of the system. Hin tz  ( re f .  15) has provided a compre- 
hensive discussion of truncation of  mode se t s .  Al though  truncation is  usually 
accomplished by elimination of some coordinates associated w i t h  substructure 
normal modes (e.g., re f .  26), truncation may also be associated w i t h  other 
coordinates such as constraint mode coordinates (e.g. , ref .  16). 
will be confined here t o  the former, i . e . ,  truncation of normal mode coordi- 
nates. The  subscript k will be used t o  denote the columns of Q, or 0 which are  
- kept. 

Attention 

For example, the Nk modes which are  kept  form the columns of @k,  where 

@i k - 1  'j k 

The diagonal matrix of corresponding 

As noted previously, attachment 

eigenvalues will be denoted by +&' 

modes can be expressed as l inear  combina- 
t ions of the free-interface normal modes. However, when the normal mode set is 
truncated, the attachment modes can no longer be represented i n  terms of 0 k .  On 
the contrary, i t  is  possible t o  modify the attachment modes so t h a t  they are 
orthogonal t o  the modes i n  0 k  (e.g., see refs. 13,17). T h i s  will be illus- 
t ra ted here for  attachment modes of  a restrained substructure. 

Note, i n  equation (12), t h a t  the columns of correspond t o  columns of the 
f l ex ib i l i t y  matrix k'l. 
f l e x i b i l i t y  matrix is  given by (see ref.  17) 

The contribution of the kept normal modes t o  this 
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The contribution o f  the modes in @k t o  can be removed from x leaving 

Energy Expressions for Substructures; Coordinate Transformation 

The derivation of system equations of motion will be based on Lagrange's 
equations of motion w i t h  undetermined multipliers. Expressions for kinetic 
energy and strain energy of the substructures are required. 
given f i r s t  for substructure physical coordinates and then i n  terms of sub- 
structure generalized coordinates. 

These will be 

The kinetic energy and potential energy of a substructure are given by 
T = g i T m i  , U = T X  1 T  k x  

respectively. The substructure physical coordinates, x ,  may be expressed i n  
terms of substructure generalized coordinates, p ,  by the coordinate transfor- 
mation 

When the above coordinate transfo.rmation i s  inserted i n t o  equations (21 ), the 
substructure generalized mass and stiffness matrices are obtained. 

x = T 1  p (22 1 

T h u s ,  

where 
1-1 = T1 T m T1 , h . = T ; k T 1  

Substructure Coupling; System Equations - o f  Motion 

To i l lustrate  coupling of substructures t o  form a system, two substruc- 
tures, a and 8,  will be employed. Let 

The substructure generalized coordinates are not a l l  independent b u t  are 
related by force equilibrium and displacement compatibility a t  substructure 
interfaces. These relationships may be expressed by the equations 

A p = O  , B p = O  

respectively. Then, a Lagrangian may be formed as follows: 
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The system equations may be obtained by applying Lagrange’s equation i n  the 
form 

where 5, can refer t o  pn,  qn or  vn. 
combined t o  give 

Then equations (26) and (27) may be 

p p + ~ p = A q + B v  T T 

together w i t h  the constraint  equations 

A p = O  , B p = O  

In the works c i ted  previously, two basic approaches have been employed fo r  
solving the coupled equations contained i n  equations (28) and (29).  
t o  system equations of the form 

Both lead 

M q + K q  = 0 (30) 

The method used by most authors will be referred t o  as the implicit  
method. I t  involves the use of a coordinate transformation T2 t o  replace the 
s e t  of dependent coordinates, p ,  by a set of l jnear ly  independent coordinates 
q .  T h u s ,  

P = T 2 q  (31 1 
Let p be parti t ioned into dependent 
coordinates , p~ , as fol 1 ows : 

p r  

coordinates , Pd , and l inear ly  independent 

PR pd I 
and l e t  the constraint  matrices A and B be combined t o  form the matrix C ,  i .e . ,  

c P ~ [ ~ ] p  = 0 (33) 

Since C will have fewer rows than columns, equations (32) and (33) may be 
combined and written i n  the form 
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where Cdd is  a non-singular square submatrix of C. Then 

Let q E pk. Then equations (31) and (35)  give 

as the general expression for transformation matrix T,. 
i n  equation (30)  are given by 

The matrices M and K 
L 

T K = T2 K T2 (37)  

Goldman (ref.  7) solved equations 
be referred t o  as the expl ic i t  method. 

Then equation (28) may be written 
.. r 

(28) and (29)  by an approach which will 
Let 

I J p + K p  = C ' O  (39)  

CT may be related t o  p by multiplying equation (39)  by C 1-1-l and incorporating 
equation (33 ) .  Then equation (39) may be written i n  the form 

Goldman's f inal  system equations are obtained by le t t ing 

9 -1/2 
P ' K  

Then equation (40) can be reduced t o  the form of  equation (30) w i t h  

M = I , K = K~~ u-l[I - CT ( c  u-' CT)'l c p-l] K''~ (42 1 

Since equation (41) implies no reduction. i n  number of coordinates, equation 
(30) leads t o  some extraneous frequencies and modes i n  the Goldman method. 
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Description of Various Coup1 i n g  Methods 

Table I shows the constituent vectors and matrices (i.e. , T1 p ,  T2, etc.) 
of a representative selection of the substructure coupling methods named 
e a r l i e r  i n  the his tor ical  review. In a l l  cases the methods f i t  in to  the 
general formulation just described. However, i n  a few cases the notation has 
been simplified by employing a parti t ioning of C (or 9) different  from tha t  
indicated i n  equations (34) and (36). 

CONVERGENCE PROPERTIES 

Desirable character is t ics  for substructure coupl ing  methods include 
(e.g. , see refs.  13,15): computational efficiency, interchangeability, compo- 
nent f l ex ib i l i t y ,  synthesis f l e x i b i l i t y ,  s t a t i c  completeness, and t e s t  compat- 
i b i l i t y .  Al though  i t  is no t  w i t h i n  the scope of this paper t o  make a detailed 
comparison of coupling techniques on the basis of the above c r i t e r i a ,  a few 
resul ts  concerning computational efficiency, i .e. , convergence, will be 
presented. Several authors have previously discussed convergence of system 
frequencies (e.g. refs .  13,16,26,27). Rubin  ( re f .  13) also considered con- 
vergence of mode shapes and shear and moment i n  beam elements. 

mode 3 of  a clamped-clamped uniform beam. 
Figure 1 shows frequency and RMS bending moment convergence properties of 

CONCLUDING REMARKS 

A general formulation has been presented which permits substructure 
coupling methods t o  be defined i n  terms of a few constituent matrices. 
A1 t h o u g h  a detailed comparison of various substructure coupl i n g  methods has 
not been w i t h i n  the scope of  this paper, i t  is hoped tha t  the presentation of 
this general formulation w i  11 faci l  i t a t e  future studies of substructure 
coupling methods. A t  the present time the use of substructure coupling as an 
analysis tool seems t o  be a well-developed subject. On the contrary, much 
remains to  be learned about effect ive ways t o  use substructure coupling i n  
conjunction w i t h  experimental studies. 
receive increased attention i n  the future. 

I t  i s  hoped tha t  this topic will 
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