27 research outputs found

    Activation of Wingless Targets Requires Bipartite Recognition of DNA by TCF

    Get PDF
    SummarySpecific recognition of DNA by transcription factors is essential for precise gene regulation. In Wingless (Wg) signaling in Drosophila, target gene regulation is controlled by T cell factor (TCF), which binds to specific DNA sequences through a high mobility group (HMG) domain [1]. However, there is considerable variability in TCF binding sites [2–5], raising the possibility that they are not sufficient for target location. Some isoforms of human TCF contain a domain, termed the C-clamp, that mediates binding to an extended sequence in vitro [6]. However, the significance of this extended sequence for the function of Wnt response elements (WREs) is unclear. In this report, we identify a cis-regulatory element that, to our knowledge, was previously unpublished. The element, named the TCF Helper site (Helper site), is essential for the activation of several WREs. This motif greatly augments the ability of TCF binding sites to respond to Wg signaling. Drosophila TCF contains a C-clamp that enhances in vitro binding to TCF-Helper site pairs and is required for transcriptional activation of WREs containing Helper sites. A genome-wide search for clusters of TCF and Helper sites identified two new WREs. Our data suggest that DNA recognition by fly TCF occurs through a bipartite mechanism, involving both the HMG domain and the C-clamp, which enables TCF to locate and activate WREs in the nucleus

    The chromatin remodelers ISWI and ACF1 directly repress Wingless transcriptional targets

    Get PDF
    AbstractThe highly conserved Wingless/Wnt signaling pathway controls many developmental processes by regulating the expression of target genes, most often through members of the TCF family of DNA-binding proteins. In the absence of signaling, many of these targets are silenced, by mechanisms involving TCFs that are not fully understood. Here we report that the chromatin remodeling proteins ISWI and ACF1 are required for basal repression of WG target genes in Drosophila. This regulation is not due to global repression by ISWI and ACF1 and is distinct from their previously reported role in chromatin assembly. While ISWI is localized to the same regions of Wingless target gene chromatin as TCF, we find that ACF1 binds much more broadly to target loci. This broad distribution of ACF1 is dependent on ISWI. ISWI and ACF1 are required for TCF binding to chromatin, while a TCF-independent role of ISWI-ACF1 in repression of Wingless targets is also observed. Finally, we show that Wingless signaling reduces ACF1 binding to WG targets, and ISWI and ACF1 regulate repression by antagonizing histone H4 acetylation. Our results argue that WG signaling activates target gene expression partly by overcoming the chromatin barrier maintained by ISWI and ACF1

    Antiviral Properties of Chemical Inhibitors of Cellular Anti-Apoptotic Bcl-2 Proteins

    Get PDF
    Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.Peer reviewe

    Antiviral properties of chemical inhibitors of cellular anti-apoptotic Bcl-2 proteins

    Get PDF
    Viral diseases remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral diseases, new treatments are urgently needed. Here we show that small-molecules, which inhibit cellular anti-apoptotic Bcl-2 proteins (Bcl-2i), induced the premature death of cells infected with different RNA or DNA viruses, whereas, at the same concentrations, no toxicity was observed in mock-infected cells. Moreover, these compounds limited viral replication and spread. Surprisingly, Bcl-2i also induced the premature apoptosis of cells transfected with viral RNA or plasmid DNA but not of mock-transfected cells. These results suggest that Bcl-2i sensitizes cells containing foreign RNA or DNA to apoptosis. A comparison of the toxicity, antiviral activity, and side effects of six Bcl-2i allowed us to select A-1155463 as an antiviral lead candidate. Thus, our results pave the way for the further development of Bcl-2i for the prevention and treatment of viral diseases.</p

    Wingless Signaling Induces Widespread Chromatin Remodeling of Target Lociâ–ż

    No full text
    How signaling cascades influence gene regulation at the level of chromatin modification is not well understood. We studied this process using the Wingless/Wnt pathway in Drosophila. When cells sense Wingless ligand, Armadillo (the fly β-catenin) becomes stabilized and translocates to the nucleus, where it binds to the sequence-specific DNA binding protein TCF to activate transcription of target genes. Here, we show that Wingless signaling induces TCF and Armadillo recruitment to a select subset of TCF binding site clusters that act as Wingless response elements. Despite this localized TCF/Armadillo recruitment, histones are acetylated over a wide region (up to 30 kb) surrounding the Wingless response elements in response to pathway activation. This widespread histone acetylation occurs independently of transcription. In contrast to Wingless targets, other active genes not regulated by the pathway display sharp acetylation peaks centered on their core promoters. Widespread acetylation of Wingless targets is dependent upon CBP, a histone acetyltransferase known to bind to Armadillo and is correlated with activation of target gene expression. These data suggest that pathway activation induces localized recruitment of TCF/Armadillo/CBP to Wingless response elements, leading to widespread histone acetylation of target loci prior to transcriptional activation

    Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles

    No full text
    The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic “pace-keeping” role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections

    Single Crystalline β-Ag<sub>2</sub>Te Nanowire as a New Topological Insulator

    No full text
    A recent theoretical study suggested that Ag<sub>2</sub>Te is a topological insulator with a highly anisotropic Dirac cone. Novel physics in the topological insulators with an anisotropic Dirac cone is anticipated due to the violation of rotational invariance. From magnetoresistance (MR) measurements of Ag<sub>2</sub>Te nanowires (NWs), we have observed Aharanov–Bohm (AB) oscillation, which is attributed to the quantum interference of electron phase around the perimeter of the NW. Angle and temperature dependences of the AB oscillation indicate the existence of conducting surface states in the NWs, confirming that Ag<sub>2</sub>Te is a topological insulator. For Ag<sub>2</sub>Te nanoplates (NPLs), we have observed high carrier mobility exceeding 22 000 cm<sup>2</sup>/(V s) and pronounced Shubnikov–de Haas (SdH) oscillation. From the SdH oscillation, we have obtained Fermi state parameters of the Ag<sub>2</sub>Te NPLs, which can provide valuable information on Ag<sub>2</sub>Te. Understanding the basic physics of the topological insulator with an anisotropic Dirac cone could lead to new applications in nanoelectronics and spintronics
    corecore