424 research outputs found

    Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach

    Full text link
    The quantum anomalous Hall effect (QAHE) has been recently demonstrated in Cr- and V-doped three-dimensional topological insulators (TIs) at temperatures below 100 mK. In those materials, the spins of unfilled d-electrons in the transition metal dopants are exchange coupled to develop a long-range ferromagnetic order, which is essential for realizing QAHE. However, the addition of random dopants does not only introduce excess charge carriers that require readjusting the Bi/Sb ratio, but also unavoidably introduces paramagnetic spins that can adversely affect the chiral edge transport in QAHE. In this work, we show a heterostructure approach to independently tune the electronic and magnetic properties of the topological surface states in (BixSb1-x)2Te3 without resorting to random doping of transition metal elements. In heterostructures consisting of a thin (BixSb1-x)2Te3 TI film and yttrium iron garnet (YIG), a high Curie temperature (~ 550 K) magnetic insulator, we find that the TI surface in contact with YIG becomes ferromagnetic via proximity coupling which is revealed by the anomalous Hall effect (AHE). The Curie temperature of the magnetized TI surface ranges from 20 to 150 K but is uncorrelated with the Bi fraction x in (BixSb1-x)2Te3. In contrast, as x is varied, the AHE resistivity scales with the longitudinal resistivity. In this approach, we decouple the electronic properties from the induced ferromagnetism in TI. The independent optimization provides a pathway for realizing QAHE at higher temperatures, which is important for novel spintronic device applications.Comment: Accepted by Nano Letter

    Band structure of topological insulators from noise measurements in tunnel junctions

    Full text link
    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al2_2O3_3/Co tunnel junctions with bottom TI electrodes of either Bi2_2Te3_3 or Bi2_2Se3_3. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems, that can further lead to the manipulation of their spin-polarized properties for technological purposes

    Unconventional Planar Hall Effect in Exchange-Coupled Topological Insulator-Ferromagnetic Insulator Heterostructures

    Full text link
    The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.Comment: 17 pages, 4 figures, accepted by Phys. Rev.

    Proximity Driven Enhanced Magnetic Order at Ferromagnetic Insulator / Magnetic Topological Insulator Interface

    Get PDF
    Magnetic exchange driven proximity effect at a magnetic insulator / topological insulator (MI/TI) interface provides a rich playground for novel phenomena as well as a way to realize low energy dissipation quantum devices. Here we report a dramatic enhancement of proximity exchange coupling in the MI / magnetic-TI EuS / Sb2x_{2-x}Vx_xTe3_3 hybrid heterostructure, where V doping is used to drive the TI (Sb2_{2}Te3_3) magnetic. We observe an artificial antiferromagnetic-like structure near the MI/TI interface, which may account for the enhanced proximity coupling. The interplay between the proximity effect and doping provides insights into controllable engineering of magnetic order using a hybrid heterostructure.Comment: 5 pages, 4 figure

    Revealing the Empty-State Electronic Structure of Single-Unit-Cell FeSe/SrTiO3_{3}

    Full text link
    We use scanning tunneling spectroscopy to investigate the filled and empty electronic states of superconducting single-unit-cell FeSe deposited on SrTiO3_3(001). We map the momentum-space band structure by combining quasiparticle interference imaging with decay length spectroscopy. In addition to quantifying the filled-state bands, we discover a Γ\Gamma-centered electron pocket 75 meV above the Fermi energy. Our density functional theory calculations show the orbital nature of empty states at Γ\Gamma and suggest that the Se height is a key tuning parameter of their energies, with broad implications for electronic properties.Comment: 5 pages, 5 figure

    Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy

    Get PDF
    Non-coplanar spin textures with scalar spin chirality can generate effective magnetic field that deflects the motion of charge carriers, resulting in topological Hall effect (THE), a powerful probe of the ground state and low-energy excitations of correlated systems. However, spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has not been considered in prior studies. Herein, we report direct evidence of universal spin chirality fluctuation by probing the THE above the transition temperatures in two different ferromagnetic ultra-thin films, SrRuO3_3 and V doped Sb2_2Te3_3. The temperature, magnetic field, thickness, and carrier type dependences of the THE signal, along with our Monte-Carlo simulations, unambiguously demonstrate that the spin chirality fluctuation is a universal phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new paradigm of exploring the spin chirality with topological Hall transport in two-dimensional magnets and beyondComment: accepted by nature material

    Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state

    Get PDF
    The quantum anomalous Hall (QAH) effect is predicted to possess, at zero magnetic field, chiral edge channels that conduct spin polarized current without dissipation. While edge channels have been observed in previous experimental studies of the QAH effect, their dissipationless nature at a zero magnetic field has not been convincingly demonstrated. By a comprehensive experimental study of the gate and temperature dependences of local and nonlocal magnetoresistance, we unambiguously establish the dissipationless edge transport. By studying the onset of dissipation, we also identify the origin of dissipative channels and clarify the surprising observation that the critical temperature of the QAH effect is two orders of magnitude smaller than the Curie temperature of ferromagnetism.Comment: main text+supporting materials. This is the accepted version for PRL. Comments are welcom
    corecore