63 research outputs found

    CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    Get PDF
    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte

    Prevalence of Dirofilaria immitis, Ehrlichia canis, Borrelia burgdorferi sensu lato, Anaplasma spp. and Leishmania infantum in apparently healthy and CVBD-suspect dogs in Portugal - a national serological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Canine vector-borne diseases (CVBDs) are caused by a wide range of pathogens transmitted to dogs by arthropods including ticks and insects. Many CVBD-agents are of zoonotic concern, with dogs potentially serving as reservoirs and sentinels for human infections. The present study aimed at assessing the seroprevalence of infection with or exposure to <it>Dirofilaria immitis, Ehrlichia canis, Borrelia burgdorferi </it>sensu lato, <it>Anaplasma </it>spp. and <it>Leishmania infantum </it>in dogs in Portugal.</p> <p>Methods</p> <p>Based on 120 veterinary medical centres from all the regions of mainland and insular Portugal, 557 apparently healthy and 628 CVBD-suspect dogs were sampled. Serum, plasma or whole blood was tested for qualitative detection of <it>D. immitis </it>antigen and antibodies to <it>E. canis, B. burgdorferi </it>s. l., <it>Anaplasma </it>spp. and <it>L. infantum </it>with two commercial in-clinic enzyme-linked immunosorbent assay kits. Odds ratios (OR) were calculated by logistic regression analysis to identify independent risk factors of exposure to the vector-borne agents.</p> <p>Results</p> <p>Total positivity levels to <it>D. immitis, E. canis, B. burgdorferi, Anaplasma </it>spp., <it>L. infantum</it>, one or more agents and mixed agents were 3.6%, 4.1%, 0.2%, 4.5%, 4.3%, 14.0% and 2.0% in the healthy group, and 8.9%, 16.4%, 0.5%, 9.2%, 25.2%, 46.3% and 11.6% in the clinically suspect group, respectively. Non-use of ectoparasiticides was a risk factor for positivity to one or more agents both in the apparently healthy (OR = 2.1) and CVBD-suspect (OR = 1.5) dogs. Seropositivity to <it>L. infantum </it>(OR = 7.6), <it>E. canis </it>(OR = 4.1) and <it>D. immitis </it>(OR = 2.4) were identified as risk factors for the presence of clinical signs compatible with CVBDs. Positivity to mixed agents was not found to be a risk factor for disease.</p> <p>Conclusions</p> <p>Dogs in Portugal are at risk of becoming infected with vector-borne pathogens, some of which are of zoonotic concern. CVBDs should be considered by practitioners and prophylactic measures must be put in place to protect dogs and limit the risk of transmission of vector-borne agents to humans. This study is expected to give veterinary and public health authorities an increased awareness about CVBDs in Portugal and to serve as a reference for future investigations and control actions.</p

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF

    Reducing False Alarm Rates in Neonatal Intensive Care: A New Machine Learning Approach

    Full text link
    In neonatal intensive care units (NICUs), 87.5% of alarms by the monitoring system are false alarms, often caused by the movements of the neonates. Such false alarms are not only stressful for the neonates as well as for their parents and caregivers, but may also lead to longer response times in real critical situations. The aim of this project was to reduce the rates of false alarms by employing machine learning algorithms (MLA), which intelligently analyze data stemming from standard physiological monitoring in combination with cerebral oximetry data (in-house built, OxyPrem). MATERIALS & METHODS Four popular MLAs were selected to categorize the alarms as false or real: (i) decision tree (DT), (ii) 5-nearest neighbors (5-NN), (iii) naïve Bayes (NB) and (iv) support vector machine (SVM). We acquired and processed monitoring data (median duration (SD): 54.6 (± 6.9) min) of 14 preterm infants (gestational age: 26 6/7 (± 2 5/7) weeks). A hybrid method of filter and wrapper feature selection generated the candidate subset for training these four MLAs. RESULTS A high specificity of >99% was achieved by all four approaches. DT showed the highest sensitivity (87%). The cerebral oximetry data improved the classification accuracy. DISCUSSION & CONCLUSION Despite a (as yet) low amount of data for training, the four MLAs achieved an excellent specificity and a promising sensitivity. Presently, the current sensitivity is insufficient since, in the NICU, it is crucial that no real alarms are missed. This will most likely be improved by including more subjects and data in the training of the MLAs, which makes pursuing this approach worthwhile

    Molecular detection of bioluminescent dinoflagellates in surface waters of the Patagonian Shelf during early austral summer 2008

    Get PDF
    We investigated the distribution of bioluminescent dinoflagellates in the Patagonian Shelf region using “universal” PCR primers for the dinoflagellate luciferase gene. Luciferase gene sequences and single cell PCR tests, in conjunction with taxonomic identification by microscopy, allowed us to identify and quantify bioluminescent dinoflagellates. We compared these data to coincidental discrete optical measurements of stimulable bioluminescence intensity. Molecular detection of the luciferase gene showed that bioluminescent dinoflagellates were widespread across the majority of the Patagonian Shelf region. Their presence was comparatively underestimated by optical bioluminescence measurements, whose magnitude was affected by interspecific differences in bioluminescence intensity and by the presence of other bioluminescent organisms. Molecular and microscopy data showed that the complex hydrography of the area played an important role in determining the distribution and composition of dinoflagellate populations. Dinoflagellates were absent south of the Falkland Islands where the cold, nutrient-rich, and well-mixed waters of the Falklands Current favoured diatoms instead. Diverse populations of dinoflagellates were present in the warmer, more stratified waters of the Patagonian Shelf and Falklands Current as it warmed northwards. Here, the dinoflagellate population composition could be related to distinct water masses. Our results provide new insight into the prevalence of bioluminescent dinoflagellates in Patagonian Shelf waters and demonstrate that a molecular approach to the detection of bioluminescent dinoflagellates in natural waters is a promising tool for ecological studies of these organisms
    corecore