19 research outputs found

    Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton

    Get PDF
    Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet-Biedl/Meckel-Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration

    Use of inner ear-specific promoters to ectopically express Math1 in vivo in the developing mouse cochlea

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells

    No full text
    MAP3K1 is a serine/threonine kinase that is activated by a diverse set of stimuli and exerts its effect through various downstream effecter molecules, including JNK, ERK1/2 and p38. In humans, mutant alleles of MAP3K1 are associated with 46,XY sex reversal. Until recently, the only phenotype observed in Map3k1tm1Yxia mutant mice was open eyelids at birth. Here, we report that homozygous Map3k1tm1Yxia mice have early-onset profound hearing loss accompanied by the progressive degeneration of cochlear outer hair cells. In the mouse inner ear, MAP3K1 has punctate localization at the apical surface of the supporting cells in close proximity to basal bodies. Although the cytoarchitecture, neuronal wiring and synaptic junctions in the organ of Corti are grossly preserved, Map3k1tm1Yxia mutant mice have supernumerary functional outer hair cells (OHCs) and Deiters' cells. Loss of MAP3K1 function resulted in the downregulation of Fgfr3, Fgf8, Fgf10 and Atf3 expression in the inner ear. Fgfr3, Fgf8 and Fgf10 have a role in induction of the otic placode or in otic epithelium development in mice, and their functional deficits cause defects in cochlear morphogenesis and hearing loss. Our studies suggest that MAP3K1 has an essential role in the regulation of these key cochlear morphogenesis genes. Collectively, our data highlight the crucial role of MAP3K1 in the development and function of the mouse inner ear and hearing

    XRad17 Is Required for the Activation of XChk1 But Not XCds1 during Checkpoint Signaling in Xenopus

    No full text
    The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends

    Aberrant expression and localization of the RAP1 shelterin protein contribute to age-related phenotypes.

    No full text
    Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes

    Sonic hedgehog signaling defect in <i>Wdpcp<sup>Cys40</sup></i> mutant.

    No full text
    <p>(A–F) In-situ hybridization of E10.5 forelimbs shows <i>Wdpcp<sup>Cys40</sup></i> mutants with expanded expression of <i>Fgf4</i> in the AER (apical ectodermal ridge) (A, B) and <i>Gremlin</i> in the limb mesenchyme (C, D), but reduced expression of <i>Ptch1</i> (E, F and asterisk in F). In (A) and (B), black arrowheads indicate the span of the AER, and white arrowheads are the anterior and posterior bases of the limb bud. (G–J) <i>Wdpcp</i> deficiency rescued the severe defect phenotypes of <i>Smo</i><sup>−/−</sup> (G) and <i>Ptch1</i><sup>−/−</sup> (I) mutant embryos at E10.5 dpc. The <i>Wdpcp<sup>Cys40/Cys40</sup></i>;<i>Smo</i><sup>−/−</sup> (H) and <i>Wdpcp<sup>Cys40/Cys40</sup>;Ptch1</i><sup>−/−</sup> (J) double homozygous mutant embryos collected at E10.5 dpc show more robust growth with better axial development and also more normal head and heart development. (K) Western blotting of Gli3 in tissue extracts obtained from the limb and neural tube shows a decrease of Gli3-R/Gli3-FL ratio in <i>Wdpcp<sup>Cys40</sup></i> mutant embryos. Scale bars, 200 µm in (A), 1 mm in (G). Scales are the same in (A–F) and (G–J).</p
    corecore