8 research outputs found

    Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts.

    Get PDF
    Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses

    Genetic diversity of porcine group A rotavirus strains in the UK

    Get PDF
    Rotavirus is endemic in pig farms where it causes a loss in production. This study is the first to characterise porcine rotavirus circulating in UK pigs. Samples from diarrheic pigs with rotavirus enteritis obtained between 2010 and 2012 were genotyped in order to determine the diversity of group A rotavirus (GARV) in UK pigs. A wide range of rotavirus genotypes were identified in UK pigs: six G types (VP7); G2, G3, G4, G5, G9 and G11 and six P types (VP4); P[6], P[7], P[8], P[13], P[23], and P[32]. With the exception of a single P[8] isolate, there was less than 95% nucleotide identity between sequences from this study and any available rotavirus sequences. The G9 and P[6] genotypes are capable of infecting both humans and pigs, but showed no species cross-over within the UK as they were shown to be genetically distinct, which suggested zoonotic transmission is rare within the UK. We identified the P[8] genotype in one isolate, this genotype is almost exclusively found in humans. The P[8] was linked to a human Irish rotavirus isolate in the same year. The discovery of human genotype P[8] rotavirus in a UK pig confirms this common human genotype can infect pigs and also highlights the necessity of surveillance of porcine rotavirus genotypes to safeguard human as well as porcine health

    Efficiency of disinfectants against Rotavirus in the presence and absence of organic matter

    No full text
    Rotavirus is an enteric pathogen that causes morbidity and mortality in young mammals, including pigs. Outbreaks of rotavirus on commercial farms have a significant economic impact in terms of losses in production. Effective cleaning and disinfection along with good farm management can reduce rotavirus contamination in the environment, and decrease the chance of outbreaks of disease. This study investigated the efficacy of six commercial disinfectants against MS2 bacteriophage and Group A porcine rotavirus, in the presence of high and low levels of organic matter to simulate the farm environment. A phenolic-based disinfectant (Bi-OO-cyst) was effective at all levels of organic matter concentrations. Iodophore based disinfectants did not have a significant virucidal effect against rotavirus under any conditions. For peroxygen compound-based disinfectants and glutaraldehyde-based disinfectants, organic matter load made a significant difference in reducing efficacy. This highlights the importance of thorough cleaning with detergent before disinfection to reduce viral contamination on the farm and decrease rotavirus disease incidence in pigs

    Diversity of group A rotavirus on a UK pig farm

    No full text
    Group A rotaviruses (GARV) are a significant cause of enteritis in young pigs. The aim of this study was to extend our understanding of the molecular epidemiology of porcine GARV in the UK by investigating the genetic diversity of GARV on a conventional farrow-to-finish farm. Faecal samples were obtained from six batches of pigs in 2009 and 8 batches in 2010, when the pigs were 2, 3 (time point omitted in 2009), 4, 5, 6 and 8 weeks of age. Presence of rotavirus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in 89% and 80% of samples from 2009 and 2010, respectively. A combination of multiplex PCRs and sequencing identified four VP7 genotypes (G2, G3, G4 and G5) and three VP4 genotypes (P[6], P[7] and P[32]) present in almost every combination over the 2 years. The predominant genotype combination was G5P[32] in 2009 and G4P[32] in 2010. Conservation among the P[32] sequences between 2009 and 2010 suggests that reassortment may have led to the different genotype combinations. There were significant changes in the predominant VP7 genotype prior to weaning at 4 weeks, and post weaning when pigs were moved to a different building. Phylogenetic analysis indicated that introduction of new viruses onto the farm was limited. Taken together, these findings suggest that genetically diverse GARV strains persist within the farm environment

    Diversity of group A rotavirus on a UK pig farm

    No full text
    Group A rotaviruses (GARV) are a significant cause of enteritis in young pigs. The aim of this study was to extend our understanding of the molecular epidemiology of porcine GARV in the UK by investigating the genetic diversity of GARV on a conventional farrow-to-finish farm. Faecal samples were obtained from six batches of pigs in 2009 and 8 batches in 2010, when the pigs were 2, 3 (time point omitted in 2009), 4, 5, 6 and 8 weeks of age. Presence of rotavirus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in 89% and 80% of samples from 2009 and 2010, respectively. A combination of multiplex PCRs and sequencing identified four VP7 genotypes (G2, G3, G4 and G5) and three VP4 genotypes (P[6], P[7] and P[32]) present in almost every combination over the 2 years. The predominant genotype combination was G5P[32] in 2009 and G4P[32] in 2010. Conservation among the P[32] sequences between 2009 and 2010 suggests that reassortment may have led to the different genotype combinations. There were significant changes in the predominant VP7 genotype prior to weaning at 4 weeks, and post weaning when pigs were moved to a different building. Phylogenetic analysis indicated that introduction of new viruses onto the farm was limited. Taken together, these findings suggest that genetically diverse GARV strains persist within the farm environment

    Diversity of group A rotavirus on a UK pig farm

    Get PDF
    Group A rotaviruses (GARV) are a significant cause of enteritis in young pigs. The aim of this study was to extend our understanding of the molecular epidemiology of porcine GARV in the UK by investigating the genetic diversity of GARV on a conventional farrow-to-finish farm. Faecal samples were obtained from six batches of pigs in 2009 and 8 batches in 2010, when the pigs were 2, 3 (time point omitted in 2009), 4, 5, 6 and 8 weeks of age. Presence of rotavirus was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in 89% and 80% of samples from 2009 and 2010, respectively. A combination of multiplex PCRs and sequencing identified four VP7 genotypes (G2, G3, G4 and G5) and three VP4 genotypes (P[6], P[7] and P[32]) present in almost every combination over the 2 years. The predominant genotype combination was G5P[32] in 2009 and G4P[32] in 2010. Conservation among the P[32] sequences between 2009 and 2010 suggests that reassortment may have led to the different genotype combinations. There were significant changes in the predominant VP7 genotype prior to weaning at 4 weeks, and post weaning when pigs were moved to a different building. Phylogenetic analysis indicated that introduction of new viruses onto the farm was limited. Taken together, these findings suggest that genetically diverse GARV strains persist within the farm environment
    corecore