66 research outputs found

    Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens

    Get PDF
    We study the classical first-kind boundary integral equation reformulations of time-harmonic acoustic scattering by planar sound-soft (Dirichlet) and sound-hard (Neumann) screens. We prove continuity and coercivity of the relevant boundary integral operators (the acoustic single-layer and hypersingular operators respectively) in appropriate fractional Sobolev spaces, with wavenumber-explicit bounds on the continuity and coercivity constants. Our analysis is based on spectral representations for the boundary integral operators, and builds on results of Ha-Duong (Jpn J Ind Appl Math 7:489--513 (1990) and Integr Equat Oper Th 15:427--453 (1992)).Comment: v2 has minor corrections compared to v1. arXiv admin note: substantial text overlap with arXiv:1401.280

    Why do we need a theory and metrics of technology upgrading?

    Get PDF
    This paper discusses why we need theory and metrics of technology upgrading. It critically reviews the existing approaches to technology upgrading and motivates build-up of theoretically relevant but empirically grounded middle level conceptual and statistical framework which could illuminate a type of challenges relevant for economies at different income levels. It conceptualizes technology upgrading as three dimensional processes composed of intensity and different types of technology upgrading through various types of innovation and technology activities; broadening of technology upgrading through different forms of technology and knowledge diversification, and interaction with global economy through knowledge import, adoption and exchange. We consider this to be necessary first step towards theory and metrics of technology upgrading and generation of more relevant composite indicator of technology upgrading

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Seed longevity of red rice ecotypes buried in soil

    No full text
    Red rice is a troublesome weed in irrigated rice production and is spread through contaminated commercial rice seed and machinery. Seed dormancy is a major trait for red rice. Studies were carried out at two locations to determine red rice seed longevity in the soil of several ecotypes from four US states. Five months after burial near Beaumont, Texas only three ecotypes had viable seed (<1%) when buried at 5 cm, but 9 ecotypes had viable seed after two years when buried at 25 cm. At the thirty-sixth month after burial, ecotypes Arkansas 2, Louisiana 2 and 4, Mississippi 4 and Texas 1 had viable seeds, but at less than 1%. Freshly harvested red rice seeds buried at 12 cm near College Station, TX, survived longer than seeds placed on the soil surface. The percentage of maximum viable seeds was 2% for blackhull type Texas 4, after 17 months. In both studies, commercial rice cultivar seeds were not viable after 5 months, regardless of their position in the soil. Under farming conditions with no fallow land preparations or deep tillage, most red rice seed germinated or was dead after 2 to 3 years, with only minor variation among ecotypes
    • …
    corecore