81 research outputs found

    Information and communication technology in agribusiness: A study of mobile applications in perspective of India

    Get PDF
    Federation of Indian Chambers of Commerce and Industry in one of its finding in 2019 stated that about 58%  Indians are dependent on agriculture and agriculture sector make about 15.96 % of India’s GDP. To get the best agriculture inputs and best harvest price is the big question for Indian farmers; thus, we can say that “Agriculture is the foundation of the Indian economy”. With the origin of Mobile Applications (m-apps) for agriculture and a huge dependency on Information and Communication Technology (ICT) in agribusiness, the scenario in rural India has been changing rapidly. Since India’s economy depends mainly on agriculture, there is a lot of potential for Information and Communication Technology and mobile applications for agribusiness and its marketing. With growing smartphones with m-apps penetration in rural India, the agribusiness in rural belts of India is set for extension and further digitalization to revolutionize the agriculture sector. In recent years, nearly all Indian farmers possess a mobile, and 50%are smartphones with internet connections. With Government's new legislative policy changes as the Digital India programme, mobile applications in India's rural belt cannot remain isolated. Digital India will connect rural Indians farmers worldwide through the internet and mobile applications and provide them with all necessary upliftment in agribusiness in India. This study has focused on the ICT and m-applications used in farming today and how they have changed agribusiness by providing a digital platform and with their impact on agribusiness

    Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer’s disease

    Get PDF
    Alzheimer's disease (AD) is an age-specific neurodegenerative disease that compromises cognitive functioning and impacts the quality of life of an individual. Pathologically, AD is characterised by abnormal accumulation of beta-amyloid (Aβ\beta) and hyperphosphorylated tau protein. Despite research advances over the last few decades, there is currently still no cure for AD. Although, medications are available to control some behavioural symptoms and slow the disease's progression, most prescribed medications are based on cholinesterase inhibitors. Over the last decade, there has been increased attention towards novel drugs, targeting alternative neurotransmitter pathways, particularly those targeting serotonergic (5-HT) system. In this review, we focused on 5-HT receptor (5-HTR) mediated signalling and drugs that target these receptors. These pathways regulate key proteins and kinases such as GSK-3 that are associated with abnormal levels of Aβ\beta and tau in AD. We then review computational studies related to 5-HT signalling pathways with the potential for providing deeper understanding of AD pathologies. In particular, we suggest that multiscale and multilevel modelling approaches could potentially provide new insights into AD mechanisms, and towards discovering novel 5-HTR based therapeutic targets.Comment: Accepted manuscript in Neuropharmacolog

    Degeneracy and stability in neural circuits of dopamine and serotonin neuromodulators: A theoretical consideration

    Get PDF
    Degenerate neural circuits perform the same function despite being structurally different. However, it is unclear whether neural circuits with interacting neuromodulator sources can themselves degenerate while maintaining the same neuromodulatory function. Here, we address this by computationally modeling the neural circuits of neuromodulators serotonin and dopamine, local glutamatergic and GABAergic interneurons, and their possible interactions, under reward/punishment-based conditioning tasks. The neural modeling is constrained by relevant experimental studies of the VTA or DRN system using, e.g., electrophysiology, optogenetics, and voltammetry. We first show that a single parsimonious, sparsely connected neural circuit model can recapitulate several separate experimental findings that indicated diverse, heterogeneous, distributed, and mixed DRNVTA neuronal signaling in reward and punishment tasks. The inability of this model to recapitulate all observed neuronal signaling suggests potentially multiple circuits acting in parallel. Then using computational simulations and dynamical systems analysis, we demonstrate that several different stable circuit architectures can produce the same observed network activity profile, hence demonstrating degeneracy. Due to the extensive D2-mediated connections in the investigated circuits, we simulate the D2 receptor agonist by increasing the connection strengths emanating from the VTA DA neurons. We found that the simulated D2 agonist can distinguish among sub-groups of the degenerate neural circuits based on substantial deviations in specific neural populations’ activities in reward and punishment conditions. This forms a testable model prediction using pharmacological means. Overall, this theoretical work suggests the plausibility of degeneracy within neuromodulator circuitry and has important implications for the stable and robust maintenance of neuromodulatory functions

    Field, petrographic and geochemical characteristics of Sullya alkaline complex in the Cauvery Shear Zone (CSZ), southern India: Implications for petrogenesis

    Get PDF
    Significant, but volumetrically smaller, unmetamorphosed and largely undeformed alkaline magmatic suites have been reported from the Southern Granulite Terrain in southern India. These Neoproterozoic alkaline magmatic rocks occur as lenses, dykes and plugs that are mostly within, or proximal to, major shear zones or transcrustal faults. In this contribution, field, petrographic and whole-rock geochemical data of Sullya syenites and associated mafic granulites from the Mercara Shear Zone (MSZ), which separates low-grade (greenschist to upper amphibolite facies) Dharwar Craton and high-grade (granulite facies) Southern Granulite Terrain is presented. The isolated body of the Sullya syenite, similar to other alkaline plutons of the Southern Granulite Terrain, shows an intrusive relationship with the host hornblende-biotite gneisses and mafic granulites. The Sullya syenites lack macroscopic foliations and unlike, other plutons, they are not associated with carbonatites and ultrapotassic granites. Potash feldspar and plagioclase dominates the felsic phases in the Sullya syenite and there is negligible quartz. The studied syenites show evidence of melt supported deformation, but show no evidence of recrystallization. Geochemically, they most resemble the Angadimogar syenites (situated 3 km west of the Sullya syenites) with similar major oxide and trace element concentrations. The petrogenetic studies of the Sullya syenite have indicated that they were generated by mixing of two different sources derived from the partial melting of metasomatized continental mantle lithosphere and lower crustal mafic granulites. This melt source could have been emplaced in a rift-related tectonic setting. The emplacement is considered to be controlled by shears

    Identification of Genomic Regions and Sources for Wheat Blast Resistance through GWAS in Indian Wheat Genotypes

    Get PDF
    Wheat blast (WB) is a devastating fungal disease that has recently spread to Bangladesh and poses a threat to the wheat production in India, which is the second-largest wheat producing country in the world. In this study, 350 Indian wheat genotypes were evaluated for WB resistance in 12 field experiments in three different locations, namely Jashore in Bangladesh and Quirusillas and Okinawa in Bolivia. Single nucleotide polymorphisms (SNPs) across the genome were obtained using DArTseq (R) technology, and 7554 filtered SNP markers were selected for a genome-wide association study (GWAS). All the three GWAS approaches used identified the 2NS translocation as the only major source of resistance, explaining up to 32% of the phenotypic variation. Additional marker-trait associations were located on chromosomes 2B, 3B, 4D, 5A and 7A, and the combined effect of three SNPs (2B_180938790, 7A_752501634 and 5A_618682953) showed better resistance, indicating their additive effects on WB resistance. Among the 298 bread wheat genotypes, 89 (29.9%) carried the 2NS translocation, the majority of which (60 genotypes) were CIMMYT introductions, and 29 were from India. The 2NS carriers with a grand mean WB index of 6.6 showed higher blast resistance compared to the non-2NS genotypes with a mean index of 46.5. Of the 52 durum wheats, only one genotype, HI 8819, had the 2NS translocation and was the most resistant, with a grand mean WB index of 0.93. Our study suggests that the 2NS translocation is the only major resistance source in the Indian wheat panel analysed and emphasizes the urgent need to identify novel non-2NS resistance sources and genomic regions

    New Genotypes and Genomic Regions for Resistance to Wheat Blast in South Asian Germplasm

    Get PDF
    Wheat blast (WB) disease, since its first identification in Bangladesh in 2016, is now an established serious threat to wheat production in South Asia. There is a need for sound knowledge about resistance sources and associated genomic regions to assist breeding programs. Hence, a panel of genotypes from India and Bangladesh was evaluated for wheat blast resistance and a genome-wide association study (GWAS) was performed. Disease evaluation was done during five crop seasons-at precision phenotyping platform (PPPs) for wheat blast disease at Jashore (2018-19), Quirusillas (2018-19 and 2019-20) and Okinawa (2019 and 2020). Single nucleotide polymorphisms (SNP) across the genome were obtained using DArTseq genotyping-by-sequencing platform, and in total 5713 filtered markers were used. GWAS revealed 40 significant markers associated with WB resistance, of which 33 (82.5%) were in the 2NS/2AS chromosome segment and one each on seven chromosomes (3B, 3D, 4A, 5A, 5D, 6A and 6B). The 2NS markers contributed significantly in most of the environments, explaining an average of 33.4% of the phenotypic variation. Overall, 22.4% of the germplasm carried 2NS/2AS segment. So far, 2NS translocation is the only effective WB resistance source being used in the breeding programs of South Asia. Nevertheless, the identification of non-2NS/2AS genomic regions for WB resistance provides a hope to broaden and diversify resistance for this disease in years to come

    Degeneracy and stability in neural circuits of dopamine and serotonin neuromodulators: A theoretical consideration

    Get PDF
    Degenerate neural circuits perform the same function despite being structurally different. However, it is unclear whether neural circuits with interacting neuromodulator sources can themselves degenerate while maintaining the same neuromodulatory function. Here, we address this by computationally modeling the neural circuits of neuromodulators serotonin and dopamine, local glutamatergic and GABAergic interneurons, and their possible interactions, under reward/punishment-based conditioning tasks. The neural modeling is constrained by relevant experimental studies of the VTA or DRN system using, e.g., electrophysiology, optogenetics, and voltammetry. We first show that a single parsimonious, sparsely connected neural circuit model can recapitulate several separate experimental findings that indicated diverse, heterogeneous, distributed, and mixed DRNVTA neuronal signaling in reward and punishment tasks. The inability of this model to recapitulate all observed neuronal signaling suggests potentially multiple circuits acting in parallel. Then using computational simulations and dynamical systems analysis, we demonstrate that several different stable circuit architectures can produce the same observed network activity profile, hence demonstrating degeneracy. Due to the extensive D2-mediated connections in the investigated circuits, we simulate the D2 receptor agonist by increasing the connection strengths emanating from the VTA DA neurons. We found that the simulated D2 agonist can distinguish among sub-groups of the degenerate neural circuits based on substantial deviations in specific neural populations’ activities in reward and punishment conditions. This forms a testable model prediction using pharmacological means. Overall, this theoretical work suggests the plausibility of degeneracy within neuromodulator circuitry and has important implications for the stable and robust maintenance of neuromodulatory functions

    Enhanced Joule Heating in Umbral Dots

    Full text link
    We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic

    Spectropolarimetery of umbral fine structures from Hinode: Evidence for magnetoconvection

    Full text link
    We present spectropolarimetric analysis of umbral dots and a light bridge fragment that show dark lanes in G-band images. Umbral dots show upflow as well as associated positive Stokes V area asymmetry in their central parts. Larger umbral dots show down flow patches in their surrounding parts that are associated with negative Stokes V area asymmetry. Umbral dots show weaker magnetic field in central part and higher magnetic field in peripheral area. Umbral fine structures are much better visible in total circularly polarized light than in continuum intensity. Umbral dots show a temperature deficit above dark lanes. The magnetic field inclination show a cusp structure above umbral dots and a light bridge fragment. We compare our observational findings with 3D magnetohydrodynamic simulations.Comment: Accepted for publication in MNRAS, 6 pages, 6 figure
    corecore