1,028 research outputs found

    Thomas Chance

    Get PDF
    Founded in 2010, ASV Global is a world leader in unmanned surface vessel technology. The company has built more than 75 ASVs and 30 different payloads for defense and commercial applications. The ASVs are from 4’ to 40’ long and have endurance of up to 60 days. Products include ASV design, construction, vessel and payload control, payload integration, launch & retrieval systems, and field support. Clients can lease or purchase ASVs or convert manned vessels to optionally manned. Today the company has 70 employees with offices in the US and UK. Eighty-eight percent of the company’s equity is US owned. Mr. Chance’s role is product strategy and development

    THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL COILS – EFFECTS OF VARIATIONS IN FIBER VOLUME FRACTION

    Get PDF
    Several problems must be solved in the construction, design, and operation of a nuclear fusion reactor. One of the chief problems in the manufacture of high-powered copper/polymer composite magnets is the difficulty to precisely control the fiber volume fraction. In this thesis, the effect of variations in fiber volume fraction on thermal stresses in copper/cyanate ester composite cylinders is investigated. The cylinder is a composite that uses copper wires that run longitudinally in a cyanate ester resin specifically developed by Composite Technology Development, Inc. This composite cylinder design is commonly used in magnets for nuclear fusion reactors. The application of this research is for magnets that use cylindrical coil geometry such as the Mega Amp Spherical Tokamak (MAST) in the UK. However, most stellarator magnet designs use complex geometries including the National Compact Stellarator Experiment (NCSX), and the Quasi-Poloidal Stellarator (QPS). Even though the actual stresses calculated for the cylindrical geometry may not be directly applicable to these projects, the relationship between fiber volume fraction and stresses will be useful for any geometry. The effect of fiber volume fraction on stresses produced by mechanical, thermal and magnetic loads on cylindrical magnet coils is studied using micromechanics with laminate plate theory (LPT) and finite element analysis (FEA). Based on the findings of this research, variations in volume fraction do significantly affect the stress experienced by the composite cylinder. Over a range of volume fractions from 0.3 to 0.5, the LPT results demonstrate that thermally induced stresses vary approximately 30% while stresses due to pressure vary negligibly. The FEA shows that magnetic stresses vary much less at around only 5%. FEA results seem to confirm the LPT model. It was also concluded that the stress in the insulation layers due to all types of loadings is significant and must be considered when using this system in fusion applications

    Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment

    Get PDF
    Abstract. We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitudedependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40 % less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be • 10%. The GEOS-CHEM model captures 50 % and 60 % of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias. 1

    Mountains of Maize, Persistent Poverty

    Get PDF
    The past two years are a tribute to Zambian farmers; they have responded admirably to government efforts to promote maize production. But ironically, rural poverty remains stubbornly high despite the fact that the government has spent over 2% of the nation’s gross domestic product in supporting maize production and subsidizing inputs for farmers. Why is it that maize production has increased so impressively without making a serious dent in rural poverty? And what are the lessons for the new government?maize, poverty, Zambia, Agricultural and Food Policy, Food Security and Poverty,

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    First observations of iodine oxide from space

    Get PDF
    We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 × 10^(13) molecules cm^(−2) are observed around coastal Antarctica; by contrast during that time in the Artic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2–4 × 10^(12) molecules cm^(−2) for slant columns). The levels reported here are in reasonably good agreement with previous ground‐based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea‐ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica

    Identifying Irrigated Areas in the Snake River Plain, Idaho: Evaluating Performance Across Composting Algorithms, Spectral Indices, and Sensors

    Get PDF
    There are pressing concerns about the interplay between agricultural productivity, water demand, and water availability in semi-arid to arid regions of the world. Currently, irrigated agriculture is the dominant water user in these regions and is estimated to consume approximately 80% of the world’s diverted freshwater resources. We develop an improved irrigated land-use mapping algorithm that uses the seasonal maximum value of a spectral index to distinguish between irrigated and non-irrigated parcels in Idaho’s Snake River Plain. We compare this approach to two alternative algorithms that differentiate between irrigated and non-irrigated parcels using spectral index values at a single date or the area beneath spectral index trajectories for the duration of the agricultural growing season. Using six different pixel and county-scale error metrics, we evaluate the performance of these three algorithms across all possible combinations of two growing seasons (2002 and 2007), two datasets (MODIS and Landsat 5), and three spectral indices, the Normalized Difference Vegetation Index, Enhanced Vegetation Index and Normalized Difference Moisture Index (NDVI, EVI, and NDMI). We demonstrate that, on average, the seasonal-maximum algorithm yields an improvement in classification accuracy over the accepted single-date approach, and that the average improvement under this approach is a 60% reduction in county scale root mean square error (RMSE), and modest improvements of overall accuracy in the pixel scale validation. The greater accuracy of the seasonal-maximum algorithm is primarily due to its ability to correctly classify non-irrigated lands in riparian and developed areas of the study region

    Concussion-reporting behavior in rugby: A national survey of rugby union players in the United States

    Get PDF
    Background: Rugby is the fastest growing team sport in the United States for male and female athletes. It is a contact/collision sport with an injury risk profile that includes concussions. Purpose: To examine the prevalence of concussions in male and female rugby players in the United States and to characterize behaviors around reporting concussions that could be a target for prevention and treatment efforts. Study Design: Cross-sectional study; Level of evidence, 3. Methods: An online survey distributed to active members on the USA Rugby membership list was used to examine self-reported concussions in male and female athletes. Concussion-reporting behaviors and return to play after a concussion were also explored. Statistical analysis was used to compare male with female athletes and report differences, with years of experience as a dependent variable. Results: The proportion of athletes with a history of at least 1 concussion was 61.9% in all respondents. Of those who reported a concussion, 50.8% reported the concussion during the game or practice in which it occurred, and 57.6% reported at least 1 concussion to a qualified medical provider. Overall, 27.7% of participants who reported ≥1 rugby-related concussion in our survey noted that at least 1 of these concussions was not formally reported. The most commonly cited reasons for not reporting a concussion included not thinking that it was a serious injury, not knowing that it was a concussion at the time, and not wanting to be pulled out of the game or practice. Additionally, 61.0% of athletes did not engage in recommended return-to-play protocols after their most recent rugby-related concussion. Conclusion: US rugby union athletes may not report concussions to medical personnel or follow return-to-play protocols guided by medical advice. This could result from a lack of education on concussion recognition and the risks associated with continued play after a concussion as well as limited access to health care. Further education efforts focusing on the identification of concussions, removal from play, and return-to-play protocols are necessary in the US rugby union population

    Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    Get PDF
    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution
    corecore