383 research outputs found

    Numerical Investigation of the Unsteady Flows in a Transonic Axial Flow Turbine With Temperature Distortions

    Get PDF
    L'articolo tratta degli effetti di macchina reale in stadi di alta pressione di turbina a gas

    Defective monocyte-derived macrophage phagocytosis is associated with exacerbation frequency in COPD

    Get PDF
    Background Lower airway bacterial colonisation (LABC) in COPD patients is associated with increased exacerbation frequency and faster lung function decline. Defective macrophage phagocytosis in COPD drives inflammation, but how defective macrophage function contributes to exacerbations is not clear. This study investigated the association between macrophage phagocytosis and exacerbation frequency, LABC and clinical parameters. Methods Monocyte-derived macrophages (MDM) were generated from 92 stable COPD patients, and at the onset of exacerbation in 39 patients. Macrophages were exposed to fluorescently labelled Haemophilus influenzae or Streptococcus pneumoniae for 4 h, then phagocytosis measured by fluorimetry and cytokine release by ELISA. Sputum bacterial colonisation was measured by PCR. Results Phagocytosis of H. influenzae was negatively correlated with exacerbation frequency (r = 0.440, p < 0.01), and was significantly reduced in frequent vs. infrequent exacerbators (1.9 × 103 RFU vs. 2.5 × 103 RFU, p < 0.01). There was no correlation for S. pneumoniae. There was no association between phagocytosis of either bacteria with age, lung function, smoking history or treatment with inhaled corticosteroids, or long-acting bronchodilators. Phagocytosis was not altered during an exacerbation, or in the 2 weeks post-exacerbation. In response to phagocytosis, MDM from exacerbating patients showed increased release of CXCL-8 (p < 0.001) and TNFα (p < 0.01) compared to stable state. Conclusion Impaired COPD macrophage phagocytosis of H. influenzae, but not S. pneumoniae is associated with exacerbation frequency, resulting in pro-inflammatory macrophages that may contribute to disease progression. Targeting these frequent exacerbators with drugs that improve macrophage phagocytosis may prove beneficial

    Expression of the Rap1 Guanine Nucleotide Exchange Factor, MR-GEF, Is Altered in Individuals with Bipolar Disorder

    Get PDF
    In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission

    Decoupling of a Current-Biased Intrinsic Josephson Junction from its Environment

    Full text link
    We have observed a dissipative phase diffusion branch in arrays of hysteretic high-Tc intrinsic Josephson junctions. By comparing the data with a thermal activation model we extract the impedance seen by the junction in which phase diffusion is occurring. At the plasma frequency this junction is isolated from its environment and it sees its own large (~ kilo Ohm) impedance. Our results suggest that stacks of Josephson junctions may be used for isolation purposes in the development of a solid state quantum computer

    Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism

    Get PDF
    Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neurondirected microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder

    DNA Methylation Profiles of Ovarian Epithelial Carcinoma Tumors and Cell Lines

    Get PDF
    BACKGROUND:Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies. METHODOLOGY/PRINCIPAL FINDINGS:We obtained DNA methylation profiles of 1,505 CpG sites (808 genes) in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes) that exhibited 'subtype-specific' DNA methylation patterns (FDR<1%) among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene. SIGNIFICANCE:The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of potential tumor progenitor cells, which may help illuminate the etiology and natural history of these cancers

    A new method for isolating and analysing coccospheres within sediment

    Get PDF
    This is the final version. Available on open access from nature Research via the DOI in this recordSize is a fundamental cellular trait that is important in determining phytoplankton physiological and ecological processes. Fossil coccospheres, the external calcite structure produced by the excretion of interlocking plates by the phytoplankton coccolithophores, can provide a rare window into cell size in the past. Coccospheres are delicate however and are therefore poorly preserved in sediment. We demonstrate a novel technique combining imaging flow cytometry and cross-polarised light (ISX+PL) to rapidly and reliably visually isolate and quantify the morphological characteristics of coccospheres from marine sediment by exploiting their unique optical and morphological properties. Imaging flow cytometry combines the morphological information provided by microscopy with high sample numbers associated with flow cytometry. High throughput imaging overcomes the constraints of labour-intensive manual microscopy and allows statistically robust analysis of morphological features and coccosphere concentration despite low coccosphere concentrations in sediments. Applying this technique to the fine-fraction of sediments, hundreds of coccospheres can be visually isolated quickly with minimal sample preparation. This approach has the potential to enable rapid processing of down-core sediment records and/or high spatial coverage from surface sediments and may prove valuable in investigating the interplay between climate change and coccolithophore physiological/ecological response.Natural Environment Research Council (NERC)Shell Research LtdEuropean Union Horizon 202

    Synthesis and structure-activity analysis of new phosphonium salts with potent activity against African trypanosomes

    Get PDF
    A series of 73 bisphosphonium salts and 10 monophosphonium salt derivatives were synthesized and tested in vitro against several wild type and resistant lines of Trypanosoma brucei (T. b. rhodesiense STIB900, T. b. brucei strain 427, TbAT1-KO, and TbB48). More than half of the compounds tested showed a submicromolar EC 50 against these parasites. The compounds did not display any cross-resistance to existing diamidine therapies, such as pentamidine. In most cases, the compounds displayed a good selectivity index versus human cell lines. None of the known T. b. brucei drug transporters were required for trypanocidal activity, although some of the bisphosphonium compounds inhibited the low affinity pentamidine transporter. It was found that phosphonium drugs act slowly to clear a trypanosome population but that only a short exposure time is needed for irreversible damage to the cells. A comparative molecular field analysis model (CoMFA) was generated to gain insights into the SAR of this class of compounds, identifying key features for trypanocidal activity. © 2012 American Chemical Society.Peer Reviewe
    • …
    corecore