423 research outputs found

    Stable habitual domains: Existence and implications

    Get PDF
    AbstractConditions for the number of elements in habitual domains and for the activation propensity of each element in the habitual domains to become stabilized are described. The formation of stable states implies enduring personality and attitudes and conditioned or programmed behavior. Some important implications for decision analysis, high-stake decision problems, optimality, gaming and conflict resolution, and career management are also discussed

    Study of self-alignment of μBGA packages

    Get PDF
    In this paper, a detailed study of the self-alignment of BGA packages is presented. Complete self-alignment can be achieved even for a misalignment of the package of larger than 50% off the test board pad centres. A small residual displacement of the package from perfect alignment after reflow is observed. The reason for this displacement is the action of gas flow viscous drag on the package during reflow. The use of eutectic SnPb solder paste slightly reduces self-aligning ability, due to the increase in the solder volume, which reduces the restoring force. Exposure of the solder paste to a 25 C and 85% RH humidity environment also has a detrimental effect on the self-alignment of the BGA package, due to solvent evaporation and moisture absorption in the paste causing solderability degradation. The self-alignment of the package is also affected when there is slow spreading of molten solder on the pad surface. This is attributed to the reduction of restoring force due to the decrease in effective wetting surface area of the board pad

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization

    Get PDF
    We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ\mu-strongly convex objective functions with LL-Lipschitz continuous gradient. In the framework of Nesterov both μ\mu and LL are assumed known -- an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ\mu and LL during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. The results show that for ill-conditioned problems solved to high accuracy, the proposed method significantly outperforms state-of-the-art first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity

    Get PDF
    DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation

    Compliance of clinical trial registries with the World Health Organization minimum data set : a survey

    Get PDF
    BACKGROUND: Since September 2005 the International Committee of Medical Journal Editors has required that trials be registered in accordance with the World Health Organization (WHO) minimum dataset, in order to be considered for publication. The objective is to evaluate registries' and individual trial records' compliance with the 2006 version of the WHO minimum data set. METHODS: A retrospective evaluation of 21 online clinical trial registries (international, national, specialty, pharmaceutical industry and local) from April 2005 to February 2007 and a cross-sectional evaluation of a stratified random sample of 610 trial records from the 21 registries. RESULTS: Among 11 registries that provided guidelines for registration, the median compliance with the WHO criteria were 14 out of 20 items (range 6 to 20). In the period April 2005-February 2007, six registries increased their compliance by six data items, on average. None of the local registry websites published guidelines on the trial data items required for registration. Slightly more than half (330/610; 54.1%, 95% CI 50.1% - 58.1%) of trial records completed the contact details criteria while 29.7% (181/610, 95% CI 26.1% - 33.5%) completed the key clinical and methodological data fields. CONCLUSION: While the launch of the WHO minimum data set seemed to positively influence registries with better standardisation of approaches, individual registry entries are largely incomplete. Initiatives to ensure quality assurance of registries and trial data should be encouraged. Peer reviewers and editors should scrutinise clinical trial registration records to ensure consistency with WHO's core content requirements when considering trial-related publications

    The Australian dingo is an early offshoot of modern breed dogs

    Get PDF
    Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo
    corecore