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SUMMARY
DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epige-
nome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-
related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using
Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with
both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably,
we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing
heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the
gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic
H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is main-
tained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene
transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome
regulation.
INTRODUCTION

The genome is arranged into many higher-order architectural

layers, including DNA replication timing and three-dimensional

(3D) chromatin conformation, which serve to functionally

compartmentalize genomic regulation. DNA replication follows

a highly organized replication timing program, whereby genomic

domains are replicated in a specific temporal order during S

phase, from early to late. The genome is also organized in nu-

clear space into 3D clusters formed by cis-chromatin interac-

tions (Dixon et al., 2012; Lieberman-Aiden et al., 2009; Nora

et al., 2012; Sexton et al., 2012). These clusters partition the

genome into two large-scale compartments: transcriptionally

active, open A-compartments and silenced, mostly closed B-

compartments (Lieberman-Aiden et al., 2009). Integration of

replication timing (Repli-Seq) and 3D chromatin conformation

(Hi-C) sequencing data has revealed that early replication timing

domains correspond to the active A-compartments and late

replication timing to the repressive B-compartments (Dixon
Cel
This is an open access article under the CC BY-N
et al., 2012; Ryba et al., 2010). Alterations in DNA replication

timing and 3D chromatin organization correspond to transcrip-

tional and epigenomic changes during differentiation (Miura

et al., 2019; Rivera-Mulia et al., 2015) and carcinogenesis

(Achinger-Kawecka et al., 2020; Du et al., 2019; Taberlay et al.,

2016). These results highlight that DNA replication timing and

3D genome organization together may play a coordinated role

in the higher-order regulation of the genome.

The DNA methylation landscape, in particular, long-range

domains of low DNA methylation, partially methylated domains

(PMDs), are associated with late-replicating domains (Berman

et al., 2011; Du et al., 2019) and B-compartments (Nothjunge

et al., 2017; Xie et al., 2017). These associations prompted us

to ask whether genome-wide loss of DNA methylation, one of

the major epigenomic hallmarks of cancer (Shen and Laird,

2013), can also alter the shape of the DNA replication timing pro-

gram and 3D genome organization. Previous loci-specific

studies reported that DNAmethylation loss is related to changes

in replication timing at candidate regions. For example, a shift in
l Reports 36, 109722, September 21, 2021 ª 2021 The Author(s). 1
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replication timing from late to early timing of the inactive chromo-

some X was associated with DNA demethylation in patients with

immunodeficiency disease (ICF) (Hansen et al., 2000), and

DNMT1 knockout (KO) mouse embryonic stem cells displayed

earlier replication timing of pericentromeric major satellite repeat

elements (Jørgensen et al., 2007). However, little is understood

about the effect of DNA methylation loss on genome-wide

higher-order genome organization.

Here, we address whether global DNA methylation loss that

typically occurs in cancer is associated with alterations in

DNA replication timing and 3D genome structure. We used Re-

pli-Seq, single-cell Repli-Seq, and Hi-C in a colorectal cancer

cell line (HCT116) and its isogenic cell line with double KO

(DKO) of maintenance DNA methyltransferase DNMT1 and de

novo DNA methyltransferase DNMT3B (DKO1) (Rhee et al.,

2002), as well as hypomethylated tumors and tumor patient-

derived xenograft (PDX) samples treated with decitabine, to

show that hypomethylation is associated with concordant

loss of replication timing precision and deregulation of 3D

genome organization. Our results highlight a previously under-

appreciated role for DNAmethylation in the regulation of the 3D

genome.

RESULTS

Coordinate alterations to DNA replication timing and 3D
genome organization
To determine the impact of DNAmethylation levels on higher-or-

der genome architecture, we investigated changes in both DNA

replication timing and 3D chromatin conformation after global

DNA hypomethylation. We used a well-described model of

DNA methylation loss; HCT116, a colorectal cancer cell line;

and DKO1, the isogenic cell line with DKO of the maintenance

DNA methyltransferase DNMT1 and the de novo DNA methyl-

transferase DNMT3B (Rhee et al., 2002). We found that the

DKO1 cells show DNA hypomethylation genome-wide (�56%

methylation loss) compared to HCT116 cells (Figure 1A). To

determine whether global DNA methylation loss results in

changes in DNA replication timing and/or 3D genome structure,

we performed Repli-Seq and in situ Hi-C in replicates in HCT116

and DKO1 cells (seeFigures S1 and S2A; Method details).

We examined genome-wide trends in DNA replication timing

and Hi-C data between HCT116 and DKO1 cells and found

that in contrast to global DNA hypomethylation (Figure 1A), repli-

cation timing weighted average (WA) values between HCT116

and DKO1 are highly correlated (Figure 1B, Spearman’s =

0.9613). A representative example is shown in Figure 1C. We

next used a WA difference of 15 (|DWA| > 15) as a stringent

approach to define regions with large replication timing alter-

ations, and a WA difference of 5 (|DWA| < 5) to measure minimal

changes in timing (see Figures S1E andS1F;Method details).We

found that 66.81% of the genome shows close conservation of

replication timing (|DWA| < 5) and that 29.87% of the genome

displays a moderate shift in replication timing (5 < |DWA| < 15).

Notably, at the most stringent cutoff (|DWA| > 15), a distinct frac-

tion of the genome displayed a large shift in replication timing,

that is, to either replicate earlier (1.96%) or replicate later

(1.36%) in DKO1 compared to HCT116 (Figure 1D). These earlier
2 Cell Reports 36, 109722, September 21, 2021
and later regions are on average�300 kb in size and are primarily

in intergenic and intronic regions (Figures S1G and S1H).

Next, to investigate whether loss of DNA methylation also re-

sults in alterations to large-scale genome compartmentalization,

we performed compartment analyses to define A/B-compart-

ment switching from HCT116 to DKO1. We defined A/B

compartment status with the first principal-component (PC1)

values, which represent euchromatin/heterochromatin neigh-

borhoods, respectively. Similar to replication timing, we observe

that HCT116 and DKO1 Hi-C data show a high correlation be-

tween PC1 values (Figures 1C, 1E, and S2B) and comparable

proportions of A- and B-compartments (Figure S2C). We found

that 13.63% of the genome had switched A/B-compartments

comprising switching from A to B (9.09%) and switching B to A

(4.54%) (Figure S2D). We found that while compartment

switches do cross the midline that defines A- versus B-compart-

ments, a large proportion (�45%) of these switches are at re-

gions with low compartment values, centered around PC1

values of <0.5 and > PC1 >�0.5 (Figures S2E and S2F). There-

fore, to identify regions that show strong compartment shifts,

we defined switching regions by their DPC1 score, using a

DPC1 cutoff ofR|1| (Figures 1D and S2G; Method details). Using

the more stringent criteria, we found up to 7.75% of the genome

architecture had changed; specifically, 4.43% of the genome

increased PC1 values in DKO1 and therefore is more A-type

than HCT116, and 3.32% of the genome decreased PC1 values,

where DKO1 is more B-type than HCT116. DPC1 regions are on

average�162 kb in size, and are similar in intergenic and intronic

regions (Figures S2H and S2I).

Lastly, we sought to determine whether there is concordance

between regions that show changes in DNA replication timing

and regions that show a change in genome compartmentaliza-

tion, following DNA hypomethylation. We found that where

DNA replication timing has become earlier in DKO1 compared

to HCT116, the region also moves more toward the ‘‘active’’ A-

compartment (positive PC1 values) and where DNA replication

timing has become later in DKO1, the regionmovesmore toward

the ‘‘inactive’’ B-compartment (Figures 1F and 1G). Exemplary

regions are shown in Figure 1D. These data support that global

DNA hypomethylation is associated with coordinate changes in

higher-order genome architecture at distinct domains.

Changes in higher-order genome architecture occur at
partially methylated domain boundaries
We next examined whether the genomic domains that displayed

the larger changes in replication timing and genome organization

are related to the degree of methylation loss. Early replicating

loci are highly methylated and are therefore able to lose methyl-

ation, while late-replicating loci are lowly methylated and thus

less amenable to methylation loss (Figure 1C). Not surprisingly,

loci with the largest degree of methylation loss are highly meth-

ylated in HCT116, and conversely, loci with no methylation

change or methylation gain are lowly methylated in HCT116 (Fig-

ure S3A). In particular, we find that loci with DNAmethylation loss

(DMeth % �0.4: 45.12% of all measurable CpG sites) are signif-

icantly associated with loci that replicated later or showed a

negative DPC1 difference from HCT116 to DKO1 (Figures S3B

and S3C), and these regions were highly methylated in



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
HCT116 WGBS

WGBS: HCT116 vs. DKO1

D
KO

1 
W

G
BS

7.8E-5

2.3

4.6

6.9

9.2

Densityspearman’s cor = 0.7967
r2 = 0.6104

WA: HCT116 vs. DKO1

25

50

75

spearman’s cor = 0.9613
r2 = 0.9244

25 50 75

1.5E−6

3.2E-4

6.3E-4

9.4E-4

1.3E-3

Density

Late EarlyHCT116 WA

La
te

Ea
rly

D
KO

1 
W

A

−2

−1

0

1

2

−2 −1 0 1 2
HCT116 PC1

D
KO

1 
PC

1

Hi-C PC1: HCT116 vs. DKO1
spearman’s cor = 0.8499
r2 = 0.7157

1.8E-6

0.1

0.2

0.3

0.4

Density

later

∆P
C

1 
bi

ns
 (D

KO
1 

- H
C

T1
16

)

od
ds

 ra
tio

association between ∆replication timing
domains and ∆PC1 bins

earlier

*

*
*

*

*

*
********** ********

*
*

**
*

*

*

0

2
1

4

6

8

10

<-2.0
-2.0
-1.5
-1.0
-0.8
-0.6
-0.4
-0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.5
2.0
>2.0

*
*

*

* *

*

*

*

0.0

2.5

1.0

5.0

7.5

AtoA AtoB
compartment switch
(HCT116 to DKO1)

BtoA BtoB

earlier
later

od
ds

 ra
tio

association between A/B-compartment
switches and ∆replication timing domains

HCT116 DKO1 earlier later

HCT116 DKO1

10mb

chr16

Replication
Timing

DNA
Methylation

0

Late

Early

1

Hi-C PC1

-2.5

2.5

0

10 mb 20 mb 30 mb 40 mb 50 mb 60 mb 70 mb 80 mb 90 mb

chr12p12

earlier
later

pos ∆PC1
neg ∆PC1

RefSeq Genes

Replication
Timing

DNA
Methylation 0

Late

Early

1

Hi-C PC1
-2.5

2.5

0

13 mb 14 mb 15 mb 16 mb 17 mb

CREBL2 GSG1 GRIN2B ATF7IP ART4 PTPRO STRAP MGST1 SKP1P2

1mb chr10p13

0

Late

Early

1

-2.5

2.5

0

9 mb 10 mb 11 mb 12 mb 13 mb 14 mb

3 NR_134492 NR_120636 CELF2 USP6NL DHTKD1 CCDC3 BEND7 NR_120638

1mb

A

C

E F G

B

D

Figure 1. Coordinate change in genome organization and DNA replication timing following DNA methylation loss

(A) Replicate averaged DNA methylation levels (WGBS), HCT116 versus DKO1.

(B) Replicate averaged replication timing values (WA), HCT116 versus DKO1.

(C) Representative example of replication timing and Hi-C PC1 profiles of HCT116 (red) and DKO1 (blue). Gray bars indicate no data.

(D) Representative examples of concordant change in replication timing and Hi-C PC1.

(E) Replicate averaged Hi-C PC1 values of HCT116 versus DKO1.

(F) Fisher’s exact association test between A-/B-compartment switches and earlier/later replicating loci.

(G) Fisher’s exact association test between DPC1 intervals and earlier/later replicating loci.

For (F) and (G), asterisks indicate significant associations (false discovery rate [FDR] < 0.05).
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HCT116 (Figure S3D). In contrast, loci that replicated earlier or

showed a positive DPC1 difference from HCT116 to DKO1 are

significantly associated with a slight gain in methylation (DMeth

R 0.1: 1.46% of CpG sites) (Figures S3B and S3C) and were

lowly methylated in HCT116 (Figure S3D). Therefore, distinct

higher-order genome architectural changes appear to occur

coordinately and are associated with the degree of DNA methyl-

ation change.

We next observed that changes in replication timing and chro-

matin conformation frequently co-occur at troughs in the DNA

methylation profile, also known as PMDs (Figures 2A, 2B, and

S3E). Interestingly, we found that despite widespread hypome-
thylation in DKO1 cells, the majority of HCT116 PMD regions

persist in DKO1 (Figure 2C). Both HCT116 and DKO1 PMDs

are late replicating and form ‘‘troughs’’ in the DNA methylation

profile, replication timing profile, and PC1 compartment values

(Figure S3F). However, DKO1 PMDs have less well-defined

DNA methylation boundaries due to the global hypomethylation

(Figure S3F) and also show shallower troughs in both the replica-

tion timing and Hi-C PC1 profiles.

To explore the alterations in PMD structure, we divided PMDs

into regions that are maintained, lost, or gained from HCT116 to

DKO1 (see Method details). Regions that lose PMD definition

associate with the same bins of methylation change as earlier
Cell Reports 36, 109722, September 21, 2021 3
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Figure 2. Changes in replication timing and genome organization occur at partially methylated domain boundaries

(A and B) Representative examples of regions containing lost PMDs.

(C) Overlap of PMDs between HCT116 and DKO1.

(D) Change inmethylation, replication timing and Hi-C PC1 at maintained, lost, or gained PMDs compared to ‘‘genome’’-wide. Asterisks indicate significance (p <

0.05) in 1-tailed Mann-Whitney-Wilcoxon test against ‘‘genome.’’

(E) HCT116PMDs are grouped based on the distance of shift inward of the DKO1PMDboundary at the 50 and/or 30 end. Profile plots of the average change in DNA
methylation, replication timing, and Hi-C PC1 of the 4 groups are shown; width of shading indicating confidence intervals.
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replicating and positive DPC1 compartment regions (Fig-

ure S3G). Furthermore, lost PMD regions show a clear shift to-

ward early replication timing and positive PC1 values in DKO1

compared to HCT116 (Figure 2D), contributing to �50% of all
4 Cell Reports 36, 109722, September 21, 2021
earlier loci and �34% of all positive DPC1 regions (Figure S3H).

Lost PMDs are also enriched for earlier and positive DPC1 re-

gions (Figure S3I). We further observed that PMD loss appears

to occur specifically at the boundaries of the HCT116 PMD
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and shifts inward from HCT116 to DKO1 (Figures 2B and S3E).

Figure 2E shows that larger shifts in PMD boundaries display

increasingly earlier replication timing and corresponding in-

creases in Hi-C PC1 values (i.e., B to A shift) andminimal methyl-

ation change between HCT116 and DKO1 (Figure 2E). Therefore,

our results suggest that the shift in PMD boundaries, due to the

loss of the stratification of the DNA methylation landscape,

results in a corresponding shift in higher-order genome

architecture.

DNA hypomethylation reduces precision of DNA
replication timing
Interestingly, even though replication timing values from whole-

population data between HCT116 and DKO1 are highly corre-

lated (Figure 1B; Spearman’s = 0.9613), we observed that the

range of pre-normalized replication timing (WA) values in DKO1

cells is smaller compared to that of HCT116 (Figure S1D). In

the Repli-Seq method, we calculate WA values from six-fraction

values across S phase (see Method details). To investigate the

difference in the spread of WA values between HCT116 and

DKO1, we determined the variance of the six-fraction signal. A

higher score indicates that the majority of the signal is coming

from a small number of fractions (precise timing), whereas a

lower score indicates that the signal is more evenly distributed

between the six-fractions (varied timing) (Figure S4A). We found

that DKO1 showed lower variance than HCT116 (Figure 3A),

suggesting that replication in DKO1 is more spread over the

six-fractions and therefore less precise. Representative exam-

ples of regions with decreased precision in DKO1 compared to

HCT116 are shown in Figure S4B.

A standard variance calculation disregards the order of the six-

fractions, whereas the order of the replication timing fractions

across S phase is biologically important. Therefore, we re-exam-

ined the variation using a weighted variance calculation (see

Method details). Here, a lower value indicates more precision

in timing (Figure S4E). Using the weighted variance score, we

again showed that the majority of loci show more variance and

reduced precision of DNA replication timing in DKO1 compared

to HCT116 (Figure 3B). We further showed that a similar loss of

replication timing precision also occurs in hypomethylated pros-

tate cancer LNCaP cells compared to normal prostate PrEC cells

(Figure S4F). These data suggest that the decrease in the syn-

chronization of DNA replication timing occurs as a result of

DNA hypomethylation.

DNA hypomethylation increases cell-to-cell
heterogeneity of DNA replication timing
To next determine whether the reduction in the precision of pop-

ulation-level Repli-Seq data is due to an increase in cell-to-cell

variability within the cell population, we performed single-cell

replication timing sequencing (scRepli-Seq, see Method details)

(Dileep and Gilbert, 2018; Takahashi et al., 2019). Single-cell li-

braries were generated on the Single Cell CNV Solution platform

from 10x Genomics (Figures 3C and 3D; Method details). Single

G1 and S phase cells cluster within their respective cell-cycle

states between HCT116 and DKO1 (Figures 3D and S5E). Early

S phase cells are closer to the G1 population and late S phase

cells are further from the G1 population along dimension 1 (Fig-
ure 3D). In line with the lack of replication timing precision, DKO1

cells are more disparately distributed within the S phase cell

cluster relative to HCT116 cells. We next calculated cell-to-cell

variability using mid-S phase cells (40%–70% replication) for

80-kb bins across the genome. Cell-to-cell variability scores

are highest at mid-replication timing (Figure S5F) for mid-S

phase cells as expected from prior scRepli-Seq studies (Dileep

and Gilbert, 2018; Takahashi et al., 2019). However, average

cell-to-cell variability scores of loci in one-percentile groups

across replication timing were statistically higher in DKO1

compared to HCT116 (Figure 3E), confirming increased cell-to-

cell variability in the hypomethylated DKO1 cells.

To address whether the degree of replication heterogeneity

throughout S phase is also higher in DKO1 cells compared to

HCT116 cells, we performed sigmoidal curve modeling of the

single-cell data to obtain replication kinetics for 80-kb bins

across the genome (see Method details). An exemplary region

from Figure 3C with sigmoidal curve modeling is shown in Fig-

ure 3F. The gain (or slope) of each sigmoid curve indicates how

heterogeneously a locus is replicated between cells. A steep

curve (large gain value in HCT116, e.g., g = 0.216) indicates

synchronous replication of the loci among cells, and a flatter

curve (small gain value in DKO, e.g., g = 0.094) indicates hetero-

geneous replication of the loci among cells. The gain value is

highest toward the earliest and latest extremes of replication

timing, indicating that the start and end of replication has the

least cell-to-cell heterogeneity (Figure S5G). DKO1 cells

showed overall lower gain values genome-wide than HCT116

across replication timing, further indicating more heteroge-

neous replication within the DKO1 cell population (Figure 3G).

Representative examples of the consistent lower gain values

in DKO cells can be seen in Figure 3H (lower panel DKO1-

HCT116) and Figure 3I. This trend in increased heterogeneity

occurs genome-wide, including regions with (Figure 3I, loci

1,2) and without a change in replication timing (Figures 3I, loci

3,4, and S5H), and particularly at very early and very late

regions (Figure 3J). The increase in heterogeneity at the begin-

ning and end of S phase agrees with the reduced range of pop-

ulation-level Repli-Seq WA values in DKO1 (Figure S1D). Our

data support that DNA hypomethylation is associated with

the ‘‘erosion’’ of the precise regulation of replication timing

genome-wide.

DNA hypomethylation reduces integrity of 3D genome
compartmentalization
We next examined the effects of reduced replication timing pre-

cision on 3D genome organization. As Hi-C is a cell population-

level assay, we hypothesize that similar to the loss of the preci-

sion of replication timing, we may observe a loss of strength of

organization. In corroboration with replication timing cell-to-cell

heterogeneity, DKO1 cells have reduced compartmentalization

strength of both A- and B-compartments, indicated by the

reduction of intra-compartment contact frequencies (A-A, B-B)

and an increase of inter-compartmental (A-B) contact frequency

(Figures 4A and 4B). The same finding can also be summarized in

a single compartmentalization score (Figure 4C). In addition, we

found a clear loss of compartmentalization between HCT116

and a second more hypomethylated colorectal cancer cell
Cell Reports 36, 109722, September 21, 2021 5
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LS174T (Figure S5I) and notable loss of compartmentalization

between hypomethylated colorectal tumor samples compared

to normal colorectal tissue (Figure 4D). Furthermore, we found

that a loss of compartmentalization occurs in DNMT knockdown

or KO systems in different cell-type hypomethylation models

(Figures S5J and S5K). Finally, we demonstrated that the loss

of compartmentalization occurs following DNA hypomethylation

that was induced in breast cancer xenografts treated with a

US Food and Drug Administration (FDA)-approved DNA

methyltransferase inhibitor decitabine (5-aza-20-deoxycytidine)
(Figure 4E).

In agreement with the clear loss of compartmentalization, we

show that DKO1 has a smaller percentage of the genome orga-

nized into topologically associated domains (TADs) (Figure 4F).

Reduced compartment strength and TAD structure suggest a

decrease in the number of cells within the population sharing

similar chromatin conformation and thus an increase in chro-

matin conformation heterogeneity. Figure 4G shows representa-

tive examples of chromosomes with reduced integrity of

compartmentalization. Our data show that the increase in cell-

to-cell heterogeneity of DNA replication is also reflected in the

increased blurring of 3D compartmentalization.

DNA hypomethylation is associated with loss of allelic
replication
In exploring the decrease in replication timing precision using the

WA value, we identified loci that showed a gain in replication

timing precision specifically associated with later replication

timing (Figure S6A). This was contrary to the loss of precision

in the rest of the genome. Visual inspection of these loci revealed

that they appear to be asynchronously or biphasically replicating

loci in HCT116. We therefore asked whether DNA hypomethyla-

tion can also result in changes in biphasic replication. Biphasi-

cally replicating regions occur where the locus is replicated,

both in early and late timing within the same cell type (Hansen

et al., 2010). We called biphasic regions in our HCT116 and

DKO1 Repli-Seq datasets using both our weighted variance

score and the scoring method from Hansen et al. (2010) (see

Method details). Both methods identified more biphasic regions

in HCT116 than DKO1 (Figures 5A and S6B), with�70%–85% of

the biphasic regions lost in DKO1 (Figures 5B and S6C). Repre-

sentative examples of lost biphasic regions are shown in Figures

5C and S6D.
Figure 3. Loss of global methylation increases cell-to-cell heterogene

(A) Replicate averaged variance scores, HCT116 versus DKO1.

(B) Replicate averaged weighted variance scores, HCT116 versus DKO1.

(C) Representative example of whole-population Repli-Seq with single-cell Rep

(low to high % replication score). Red vertical line refers to the 80-kb bin shown

(D) tSNE of G1 and S phase cells from HCT116 and DKO1. Early to late gradient

(E) Average cell-to-cell variability score per 1-percentile of bins across single-cell

between HCT116 and DKO1.

(F) Sigmoid model curves and gain values of example locus from (C). Dots are re

(G) Average gain scores per 1-percentile of bins across single cell RT values. Aster

and DKO1.

(H) Representative region with increased heterogeneity (loss of gain value) in DKO

G1, S1, S2, S3, S4 and G2. Red vertical lines refer to 80-kb bins shown in (I).

(I) Sigmoid model curves and gain values of loci from (H).

(J) Gain differences (DKO1–HCT116) across whole-population replication timing
Biphasic replicating regions in cell population-level data may

be due either to allelic replication or the presence of two sub-

populations with differential replication at the same locus. To

determine whether biphasic regions show allele-specific replica-

tion, we used long-read Nanopore sequencing followed by

variant calling and phasing to obtain phased haplotypes for

both HCT116 and DKO1 (see Method details). Allelically sepa-

rated replication timing WA scores show that biphasic regions

comprise one early replicating allele and one late replicating

allele in HCT116, and the alleles become more synchronously

replicated in DKO1 (Figures 5D, S6E, and S6F). We confirmed

that the biphasic replicating regions are allelic in our single-cell

DNA-seq data (Figures S6G and S6H). Using allelic replication

timing WA scores alone, we confirmed that �50% of allele-spe-

cific replicating regions are lost after DNA methylation reduction

in DKO1 cells (Figure 5E). In three regions, the loss of allelic repli-

cation timing of the early allele resulted in a significant shift to

later replication timing in population Repli-Seq data (Figures

5C, 2nd and 3rd panels, and S6D, 2nd panel). Further represen-

tative examples of loss of allele-specific replication are shown in

Figure S6I. The population-level biphasic data, together with the

Nanopore data, show that the hypomethylation predominantly

results in a loss of asynchronous allele-specific replication.

As imprinting loci are also known to show allelic replication

(Kitsberg et al., 1993), we next asked whether allele-specific

replication in HCT116 occurs at imprinted loci. We compared al-

lelically replicated genes against a list of known or predicted im-

printed genes (see Method details) (Luedi et al., 2007). Of a total

of 111 genes located at allelically replicating regions in either

HCT116 or DKO1, only 35 were protein coding (Table S1) and

only 2 of these, PRIM2 and DGCR6, were found to be in the im-

printed gene database. This suggests that the majority of allelic

replicating loci in HCT116 are not at developmentally imprinted

regions. Interestingly, we found that 16 of the 35 allelically repli-

cating protein-coding genes are also known or predicted to be

mono-allelically expressed (Gimelbrant et al., 2007; Savova

et al., 2016). Furthermore, many of the allele-specific replication

genes are reported to be cancer related (Table S1). Notably,

three genes that lose allelic replication in DKO1 cells are also re-

ported to be associated with colon cancer: NRG1 (Luraghi et al.,

2017; Stahler et al., 2017),PCDH7 (Li et al., 2020; van Roy, 2014),

and DLC1 (Durkin et al., 2007; Peng et al., 2013) (Figures 5C, 5D,

S6D, and S6E). NRG1 and PCDH7 are also mono-allelically
ity of DNA replication timing

li-Seq (scRepli-Seq). Binarized single-cell data are ordered from early to late

in (F).

of S phase cells is denoted by transition from dark to light shading.

RT values. Asterisk indicates significant difference (p < 0.05, permutation test)

al data points and lines are the fitted curves.

isk indicates significant difference (p < 0.05, permutation test) between HCT116

1 compared to HCT116. All 6 Repli-Seq fractions (PNDV) are shown in order of

values (WA) of HCT116.
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Figure 4. Loss of global methylation reduces integrity of 3D

compartmentalization

(A) Saddle plot showing contact enrichments (log2(Obs/Exp)) between pairs of

100-kb bins ordered in 50 PC1 quantile groups.

(B) Mean contact enrichments within and between A- and B-compartments

(top and bottom 20% of PC1 quantiles).
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expressed genes, andDLC1was recently reported to be partially

mono-allelically expressed (Gupta et al., 2020). All three genes

are significantly downregulated in DKO1 compared to HCT116

(Figure S6J); interestingly, they show loss of the early replicating

allele in DKO1 (Figures 5D and S6E). These data suggest that

DNA hypomethylation promotes an alteration of allelic replica-

tion timing and reduced expression of some key cancer-related

genes.

Chromatin modifications and gene expression changes
following DNA hypomethylation are associated with
altered 3D genome architecture
Chromatin changes in repressive heterochromatin histone

marks (i.e., H3K27me3, H3K9me3) have been shown to occur

following the loss ofDNMT expression (Espada et al., 2004; Red-

dington et al., 2013; Saksouk et al., 2014). Furthermore, hetero-

chromatin has been shown to be important in establishing and

maintaining global nuclear organization and compartmentaliza-

tion (Belaghzal et al., 2019; Falk et al., 2019; MacPherson

et al., 2018). Therefore, we asked where coordinated histone

modification changes occur in the genome after DNA hypome-

thylation in DKO1 cells and whether this relates to higher-order

genome architecture. To do this, we called chromHMM states

for both HCT116 and DKO1 and found that the majority of state

changes between HCT116 and DKO1 were the result of a gain of

H3K4me3, H3K4me1, and H3K27me3, and a loss of H3K36me3

and H3K9me3 (Figures S7A and S7B; Method details). These

changes can also be observed in the histone marks themselves

(Figure 6A). We observed an overall increase in H3K27me3 and

H3K4me3, and a loss of H3K9me3 mostly at late-replicating

loci. Surprisingly, the gain in H3K4me3 occurs at both early-

and late-replicating loci. The gain in H3K27me3 and loss of

H3K9me3 reflects our previous observations at hypomethylated

late-replicating regions in prostate and breast cancer cells (Du

et al., 2019).

Next, to explore whether gene deregulation, between HCT116

and DKO1, is related to replication timing and chromatin confor-

mation changes, we examined differential gene expression (Fig-

ure S7C). First, we identified genes that replicated later and

located in A-B shifted compartments (negative DPC1) are asso-

ciated with downregulation of expression, and genes that repli-

cated earlier and located in B-A shifted compartments (positive

DPC1) are associated with upregulation (Figure S7D). Genes

located within late replication timing and B-compartments

(negative PC1 values) also show the most expression upregula-

tion in DKO1 (Figure S7E), suggesting that the loss of DNA

methylation leads to aberrant gene activation in late-replicating

B-compartments.
(C) Compartmentalization score of HCT116 compared to DKO1.

(D) Boxplots of compartmentalization scores and corresponding total

methylation levels of patient normal (n = 3) and tumor (n = 12) samples, re-

analyzed from Johnstone et al. (2020).

(E) Compartmentalization scores of patient-derived xenografts, control (‘‘Ctrl’’)

and treated with DNA demethylation agent decitibine (‘‘Dec’’). Boxplots of the

corresponding methylation b values are shown.

(F) Percentage of the genome called TADs.

(G) Representative examples (Pearson correlation matrix) of loss of compart-

mentalization in DKO1 compared to HCT116.
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Figure 5. Loss of DNA methylation causes loss of allelic DNA replication

(A) Area of the genome (kb) called ‘‘biphasic’’ using the weighted variance score.

(B) Percentage of biphasic replication regions that are lost, maintained, or gained from HCT116 to DKO1.

(C) Examples of regions that changed or maintained biphasic status between HCT116 and DKO1. Colors indicating bins of the weighted variance score is shown

below each set of 6-fractions. Green indicates biphasic regions.

(D) Allelically separated replication timing (WA) scores of regions in (C). Haplotype blocks are shown above WA scores. Gray shading indicates either no data or a

break between haplotype blocks.

(E) Percentage of allelically replicating regions that are lost, maintained, or gained from HCT116 to DKO1.
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Figure 6. Chromatin modifications and gene expression changes are associated with altered 3D genome architecture

(A) Percentage occupancy of histone marks for 1-kb loci across replication timing bins in HCT116 and DKO1. Replicated peaks were used where replicates were

available (H3K4me3, H3K4me1, H3K27me3, H3K9me3).

(B) Normalized enrichment scores (NESs) for gene sets significantly enriched (FDR < 0.05) in DKO1 versus HCT116 GSEA analysis.

(C) Boxplots and density plots of differential expression (log fold change [logFC]) of genes within each gene set from (B). Asterisks indicate significance in 1-tailed

Mann-Whitney-Wilcoxon test of each gene set against genome-wide differential expression ‘‘all,’’ where the alternative is ‘‘less.’’

(D) Enrichment plots for gene sets ‘‘DNA replication origin binding’’ and ‘‘cohesin loading onto chromatin.’’

(E) Differential expression volcano plots (DKO1/HCT116) for genes within gene sets from (D).
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Second, to determine whether our observations of genome de-

compartmentalization and reduced replication precision are

related to genederegulation, weperformed a gene set enrichment

analysis (GSEA). We found that terms related to DNA replication

and chromosome organization are significantly downregulated

in DKO1 compared to HCT116 (Figures 6B and 6C)—in particular,

terms relating to DNA replication origins and cohesin (Figure 6D).

Significant terms include ORC and MCM genes, which are

involved in DNA replication origins (Figure 6E) (Bell and Stillman,

1992; Remus et al., 2009), and WAPL and RAD21, which are

involved in cohesin activity and chromosome organization (Fig-

ure 6E) (Haarhuis et al., 2017; Wutz et al., 2017). Therefore, the

loss of DNA methylation may contribute to altered 3D genome
10 Cell Reports 36, 109722, September 21, 2021
architecture through the gene deregulation of key components

of the DNA replication and genome organization machinery.

Gain of broad H3K4me3 in H3K9me3 domains after
hypomethylation may protect against genome
reorganization
One of the most significant changes in chromHMM states be-

tween HCT116 and DKO1 is the change from the H3K9me3

enrichment (heterochromatin, Het) to the H3K4me3 enrichment

(active TSS, TssA) chromatin state. This appears to occur in large

domains that coincide with late-replicating domains in both

HCT116 and DKO1 (Figures 7A and S8A). These regions have

maintained H3K9me3 between HCT116 and DKO1. However,
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Figure 7. Non-canonical H3K9me3 and H3K4me3 bivalent domains occur at conserved late-replicating B-compartments and maintains

expression silencing

(A) Representative example of broad H3K9me3 and H3K4me3 enrichment. ‘‘Het to TssA’’ track shows loci with corresponding chromatin state transitions (see

Figure S7). Beige shading indicates maintained H3K9me3 domains, and blue shading indicates lost H3K9me3 domains from HCT116 to DKO1.

(B) Area of the genome (Mb) covered by H3K9me3 and H3K4me3 board domains.

(C) Percentage occupancy of H3K9me3 and H3K4me3 broad domains between HCT116 and DKO1.

(D–F) Absolute DNA methylation levels, absolute replication timing levels, and absolute Hi-C PC1 levels in H3K9me3/H3K4me3 region types. Asterisks indicate

that the K9me3+K4me3 regions are less than the K9me3-K4me3 regions (p < 0.05, 1-tailed Mann-Whitney-Wilcoxon).

(G) DNAmethylation change in H3K9me3/H3K4me3 region types. Asterisks indicate that the K9me3+K4me3 region is greater than the other category (p < 0.05, 1-

tailed Mann-Whitney-Wilcoxon).

(legend continued on next page)
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DKO1 also displays a low but broad gain in H3K4me3 enrich-

ment across the same region (Figures 7A and S8A). The broad

H3K4me3 domains do not resemble the typically observed

punctate H3K4me3 peaks and interestingly, are only observed

when H3K9me3 is maintained from HCT116 to DKO1 (Figures

7A and S8A, beige shading), but not when H3K9me3 is lost in

DKO1 (Figures 7A and S8A, blue shading).

To examine the H3K9me3/H3K4me3 patterns genome-wide,

we called broad domains using enriched domain detector

(EDD) (Lund et al., 2014).We found that maintained H3K9me3 re-

gions showed the highest increase in H3K4me3 enrichment in

DKO1 (Figure S8B). There is no obvious increase in H3K4me1,

H3K36me3, or H3K27me3 in the H3K9me3-maintained regions

(Figure S8C), suggesting that this enrichment is H3K4me3 spe-

cific. We next tabulated the co-occupancy of H3K9me3 and

H3K4me3 between HCT116 and DKO1 (see Method details)

and observed that while DKO1 lost half of the broad H3K9me3

domains, more than double the area of the genome gained the

broad H3K4me3 domains (Figure 7B). Approximately 66% of

H3K9me3 domains in DKO1 overlap with newly acquired

H3K4me3 domains in DKO1 (Figure 7C). In contrast, there

were minimal novel H3K4me3 domains in regions that lacked

H3K9me3 domains (Figure 7C). These results show that after

DNA methylation loss, regions of the genome that maintain

H3K9me3 become broadly marked by H3K4me3 to form non-

canonical bivalent domains.

H3K9me3 is highly abundant in late replication timing loci in

cancer cells (Du et al., 2019); therefore, regions with H3K9me3

are expected to have low DNA methylation and low Hi-C PC1

values. However, we observed that H3K9me3+H3K4me3 do-

mains are consistently less methylated, display later timing, and

have lower Hi-C PC1 values than H3K9me3-H3K4me3 domains

(Figures 7D–7F). As non-canonical bivalent H3K9me3+H3K4me3

domains have very low methylation in HCT116 cells, only minimal

loss of methylation was observed (Figure 7G), with loci becoming

completely unmethylated in DKO1 (Figure 7D). The gain of

H3K4me3may therefore be a response to a completemethylation

loss at these specific regions in DKO1 cells. Non-canonical biva-

lent H3K9me3+H3K4me3 domains also show more association

with conserved late replication between HCT116 and DKO1,

compared to H3K9me3-H3K4me3 (Figure 7H). Agreeing with

the overlapwith conserved late regions, H3K9me3+H3K4me3do-

mains also overlap more with maintained PMDs compared to

H3K9me3-H3K4me3 domains (Figure 7I). Therefore, in response

to global DNAmethylation loss, late replication and genome orga-

nization appears to be maintained by the formation of these non-

canonical broad bivalent H3K9me3+H3K4me3 domains.

We finally asked whether the increase in H3K4me3 facilitates a

gain in transcriptional activitywithinH3K9me3-maintained regions.

Interestingly, bivalent H3K9me3+H3K4me3 domains showed

lower expression upregulation compared to H3K9me3-H3K4me3

domains (Figure 7J), indicating that the H3K9me3+H3K4me3 co-
(H) Association between H3K9me3/H3K4me3 region types and either conserved l

indicate significant associations (Fisher’’s exact test, FDR < 0.05).

(I) Overlap of H3K9me3/H3K4me3 region types with maintained, lost, and gained

(J) Differential expression (logFC, DKO1/HCT116) of transcripts within H3K9me3

K9me3+K4me3 is less than K9me3-K4me3 (p < 0.05, 1-tailed Mann-Whitney-Wi
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occupancy protects these regions against an overall gene activa-

tion that occurs upon global hypomethylation in DKO1 cells (see

Figure S7C). These results suggest that the gain in broad

H3K4me3 occupancy in H3K9me3-maintained domains provides

protection against aberrant gene activation after DNA methylation

loss.

DISCUSSION

DNA hypomethylation is a hallmark of cancer cells, but its impact

on the integrity of the 3D cancer genome architecture is not well

understood. Here, we reveal that DNA methylation facilitates the

maintenance of replication timing and higher-order genome

architecture. We show that genome-wide loss of DNA methyl-

ation is associated with a remarkable reduction in replication

timing precision and corresponding loss of 3D genome compart-

mentalization. Our findings suggest that DNA methylation is not

only associated with transcriptional regulation but also plays a

critical role in the maintenance of higher-order genome architec-

ture genome-wide.

To date, there are limited studies on the consequences of DNA

hypomethylation on 3D genome organization. Imaging studies re-

ported de-condensation at chromocenters after Dnmt1 KO in

mouse embryonic fibroblasts (Casas-Delucchi et al., 2012) and

an increase in DNase-I sensitivity of the inactive X chromosome

after 5-azacytidine treatment of gerbil lung fibroblasts (Jablonka

et al., 1985). However, a prior study using the HCT116/DKO1 hy-

pomethylation cell model did not find an increase in genome-wide

open chromatin, suggesting no chromosomal de-condensation

(Pandiyan et al., 2013). In contrast, we found using sequencing

approaches that DKO1 cells, as well as other DNMT knockdown

and KO cell line models (Nothjunge et al., 2017; Sati et al.,

2020), hypomethylated patient tumor samples (Johnstone et al.,

2020) and patient-derived xenografts treated with decitabine,

that a common genome-wide loss of compartmentalization was

associated with DNA hypomethylation, indicating that DNA

methylation is indeed required to maintain the stability of 3D

genome organization. Furthermore, GSEA revealed downregula-

tion of cohesin and cohesin-interacting factors, suggesting that

the loss of genome organization machinery may be involved in

decompartmentalization.

Importantly, no studies thus far have examined the global

consequence of hypomethylation on DNA replication timing. Us-

ing single cell sequencing, we show that DNA hypomethylation is

associated with the erosion of precise replication timing regula-

tion. Aswe observed the downregulation of replication origin fac-

tors, we speculate that this may result in fewer origins, leading to

the loss of replication timing precision. In addition, DNA methyl-

ation loss may destabilize origin localization, leading to cell-to-

cell replication timing heterogeneity. Previous studies reported

that DNA methylation can stabilize interactions between

H3K9me3 and origin recognition complex proteins (Bartke
ate domains, HCT116-only late domains, or DKO1-only late domains. Asterisks

PMDs between HCT116 and DKO1.

/H3K4me3 region types based on promoter overlaps. Asterisks indicate that

lcoxon).
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et al., 2010). Importantly, regulated removal of H3K9me3 by

Kdm4d at replication origins is essential for origin initiation and

elongation (Wu et al., 2017), and loss of DNA methylation results

in the aberrant loss of H3K9me3 in mouse and human cells (Es-

pada et al., 2004; Saksouk et al., 2014). Thus, we propose that

DNA methylation may play a role in stabilizing origin location

by preventing ectopic origin activation, and hence loss of

methylation leads to replication timing imprecision via disorga-

nized origin activation.

Another potential mechanism driving increased cell-to-cell

replication timing heterogeneity involves the loss of H3K9me3.

Our findings that late-replicating B-compartment regions show

significantly increased expression and associated loss of the

heterochromatic mark H3K9me3, support that late-replicating

heterochromatic regions are predominantly compromised after

DNA methylation loss. Heterochromatin, particularly H3K9me3

and its reader HP1, are reported to be important in establishing

and/or maintaining global chromatin conformation, phase sepa-

ration and compartmentalization, and DNA replication timing

(Falk et al., 2019; Klein et al., 2021; Larson et al., 2017; MacPher-

son et al., 2018). Loss of the H3K9me3 methyltransferases

(Suv39h1,2) or HP1 also leads to earlier replication timing of

chromocenters and centromeric repeats (Schwaiger et al.,

2010; Wu et al., 2006), similar to loci-specific studies of DNA

methylation loss. Therefore, the loss of H3K9me3 in DKO1 may

destabilize the organization of the genome, hence driving global

de-compartmentalization and decreased replication timing

stability.

Notably, we found the majority of 3D genome architectural

changes involved switching to earlier DNA replication timing at

the boundaries of PMDs, accompanied by a similar shift toward

active A-compartments. We show that the loss of methylation at

PMD boundaries is associated with blurring of the methylation

boundaries and shrinking of PMDs. PMDs are typically hetero-

chromatic, marked by H3K27me3 and/or H3K9me3 (Berman

et al., 2011; Hon et al., 2012). Interestingly, loss of DNA methyl-

ation was previously reported to result in an earlier onset of DNA

replication at a number of heterochromatic loci such as chromo-

centers (Casas-Delucchi et al., 2012), pericentromeric major

satellite repeats (Jørgensen et al., 2007), and the inactive X chro-

mosome (Hansen et al., 2000; Jablonka et al., 1985). Our results

indicate that earlier replication at discrete heterochromatic PMD

loci occurs genome-wide and is more common than previously

described.

We next found that discrete loci showing allele-specific repli-

cation in HCT116 are lost after DNA hypomethylation in DKO1.

The same loss of allelic replication at key cancer-related genes

(TP53 andRB1) was found in cancer patient lymphocytes treated

with the demethylation agent 5-azacytidine (Dotan et al., 2004,

2008; Nagler et al., 2010). Early studies reported that DNA

methylation-imprinted regions can show allele-specific replica-

tion (e.g., IGF2, H19, SNRPN, chromosome X) (Kitsberg et al.,

1993; Takagi and Oshimura, 1973). However, similar to other

studies (Hansen et al., 2010; Rivera-Mulia et al., 2018; Zhao

et al., 2020), we found that few allelically replicating loci contain

known or predicted imprinted genes. We therefore suggest that

allelic replication may be a separate regulatory mechanism to

classic gene imprinting. Interestingly, a substantial proportion
of the allelically replicating regions contain genes previously

identified as showing monoallelic expression. Monoallelic

expression is reported to differ in frequency between grades of

brain tumors (Walker et al., 2012) and in colorectal tumors

compared to normal tissue (Liu et al., 2018), suggesting that can-

cer cells can acquire ectopic allele-specific expression during

transformation. DNA methylation is also involved in non-im-

printed monoallelic expression in both humans and mice (da Ro-

cha and Gendrel, 2019; Gupta et al., 2020; Schalkwyk et al.,

2010). We found that the majority of allele-specific replicating

loci lost their allelic replication after DNA hypomethylation, sug-

gesting that DNA methylation may also play a role in the regula-

tion of allelically replicating genes that are also monoallelically

expressed. Furthermore, we identified that loss of allelic replica-

tion was associated with downregulation at three colon cancer-

related monoallelically expressed genes. Our results support

that altered allelic replication, induced by global changes in

DNAmethylation, is a commonmechanism of gene deregulation

within cancer cells.

Finally, it is well established that bivalent H3K4me3-

H3K27me3 states commonly occur in normal cells at silent

CpG island promoters, and that in cancer, bivalency is lost

when these promoters gain DNA methylation (Baylin and Jones,

2016). Wewere therefore intrigued to find that global loss of DNA

methylation was associated with the formation of non-canonical

bivalent domains of broad H3K4me3 enrichment in H3K9me3

domains genome-wide. Broad H3K4me3 ‘‘mesas’’ have previ-

ously been described in senescent cells and form over lamina-

associated domains (LADs) (Shah et al., 2013), and examples

of broad H3K4me3/H3K9me3 loci have previously been noted

in DKO1 cells (Lay et al., 2015). Here, we further demonstrated

that these H3K9me3+H3K4me3 domains are associated with

late replication and PMD structure and show the least aberrant

gene activation, despite the gain of the H3K4me3 active mark.

More recently, broad H3K4me3 domains have been identified

in mouse oocytes (Dahl et al., 2016; Liu et al., 2016; Zhang

et al., 2016). These non-canonical H3K4me3 domains appear

following the wave of DNA methylation erasure that occurs dur-

ing the reprogramming of primordial germ cells and during a

period of genomic silencing in late-stage oocytes (Dahl et al.,

2016; Zhang et al., 2016). Similar to our findings, the non-canon-

ical H3K4me3 domains also co-occur with PMDs (Zhang et al.,

2016) and are anti-correlated with DNA methylation (Dahl

et al., 2016). Active de novo methylation by DNMT3A and -3B

is required to protect regions against acquiring this form of

H3K4me3 (Hanna et al., 2018). Therefore, KO of de novo meth-

yltransferase DNMT3B may be the main driver of H3K4me3

domain formation in DKO1 cells. The H3K4me3 domains further

function in oocytes to maintain zygotic genome silencing (Zhang

et al., 2016), suggesting that the ectopic H3K4me3 bivalent do-

mains in DKO1 cells are protecting late-replicating H3K9me3-

marked domains from spurious activation in response to

extreme DNA methylation loss. We propose that KO of DNMT1

and DNMT3B in DKO1 cells is creating a similar demethylation

event that occurs in oocytes, subsequently causing the acquisi-

tion of non-canonical H3K4me3 domains, which protects

against catastrophic genome reorganization and corresponding

gene deregulation.
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In summary, we show that DNA hypomethylation, a hallmark of

cancer cells, can lead to the disruption of DNA replication timing

precision, cell-to-cell heterogeneity, and higher-order genome

reorganization. We hypothesize that the overall loss of distinction

in the DNA methylation profile leads to the reduced organization

of replication origin activation, blurring’ of methylation bound-

aries at PMDs, and loss of heterochromatin domains. The

resulting 3D genome heterogeneity may therefore create an

unexpected source of variation for clonal selection in cancer

evolution. It will be important in future studies to use more sin-

gle-cell epigenomic approaches to understand the temporal

relationship between changes in the epigenome and the 3D

genome architecture during tumor progression.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-DNMT1 (N-term) Sigma-Aldrich Cat#D4692; RRID: AB_262096

Anti-DNMT1 [EPR3522] (C-term) Abcam Cat#ab92314; RRID: AB_10562817

Anti-GAPDH [6C5] Thermo Fisher Scientific Cat#AM4300; RRID: AB_2536381

Anti-BrdU BD Biosciences Cat#555627; RRID: AB_395993

Chemicals, peptides, and recombinant proteins

5-Bromo-20-deoxyuridine (BrdU) Sigma Cat#B5002; CAS: 59-14-3

Vybrant DyeCycle Violet Ready Flow Invitrogen Cat#R37172

Critical commercial assays

EZ DNA Methylation-Gold Kit Zymo Research Cat#D5005

CEGX TrueMethyl� Whole Genome Kit

(v3.1)

CEGX Cat#CEGXTMWG

Epicenter EpiGnomeTM Methyl-Seq Kit Illumina Cat#EGMK81312

Arima-HiC+ kit Arima Genomics Inc. Cat#A510008

Chromium Single Cell DNA Library & Gel

Bead Kit

10X Genomics Cat#PN-1000041

Chromium Single Cell DNA Cell Bead Kit 10X Genomics Cat#PN-1000057

Chromium Chip C Single Cell DNA Kit 10X Genomics Cat#PN-1000032

Chromium Chip D Single Cell DNA Kit 10X Genomics Cat#PN-1000036

Ligation Sequencing Kit 1D Oxford Nanopore Technologies Cat#SQK-LSK109

TruSeq Stranded mRNA Library Prep kit Illumina Cat#RS-122-2102

Deposited data

HCT116 and DKO1: Repli-Seq, Hi-C,

WGBS, single cell Repli-Seq, Nanopore,

RNA-seq

This paper GEO: GSE158011

HCT116 and DKO1: ChIP-seq (Lay et al., 2015) GEO: GSE58638

PDX tumor mouse model: Hi-C and DNA

methylation EPIC array

(Achinger-Kawecka et al., 2021) GEO: GSE171074

PrEC and LNCaP prostate cell lines: Repli-

Seq

(Du et al., 2019) GEO: GSE98732

PrEC and LNCaP prostate cell lines: WGBS (Pidsley et al., 2016) GEO: GSE86833

Human colorectal normal and tumor

samples

(Johnstone et al., 2020) GEO: GSE133928

WI38 human fibroblast DNMT1 siRNA: Hi-C

and WGBS

(Sati et al., 2020) GEO: GSE130306

Mouse cardiomyocyte WT and Dnmt3a/b

DKO: Hi-C and WGBS

(Nothjunge et al., 2017) NCBI SRA: PRJNA378914 & PRJNA229470

Experimental models: cell lines

HCT116 and DKO1 Laboratory of Stephen Baylin (Rhee et al., 2002)

Oligonucleotides

Primer: DNMT1 Forward:

CATCCTGTACCGAGTTGGTG

This paper N/A

Primer: DNMT1 Reverse:

TTTCACGGGACTGGACAGC

This paper N/A

Primer: DNMT3A Forward:

CCCATTCGATCTGGTGATTG

This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: DNMT3A Reverse:

CAGGAGGCGGTAGAACTCAAAG

This paper N/A

Primer: DNMT3B Forward:

TCTCTCAAATGTGAATCCAGCC

This paper N/A

Primer: DNMT3B Reverse:

GGCGTGAGTAATTCAGCAGG

This paper N/A

Software and algorithms

Custom code used in this study This paper https://github.com/qianxidu/

Replication_Timing_Du_et_al_2021; DOI:

10.5281/zenodo.5240900

ImageJ (Schneider et al., 2012) https://imagej.nih.gov/ij/

Meth10X (v1.2) (Nair et al., 2018) https://github.com/luuloi/Meth10X

MethPipe (v3.4.2) (Song et al., 2013) http://smithlabresearch.org/software/

methpipe/

Repli-Seq processing (Du et al., 2019) https://github.com/clark-lab/

Replication-Timing/

HiC-Pro (v2.11.4) (Servant et al., 2015) https://github.com/nservant/HiC-Pro

Juicer (v1.6) (Durand et al., 2016b) https://github.com/aidenlab/juicer

JuiceBox (v0.76) (Durand et al., 2016a) https://github.com/aidenlab/Juicebox

TADtool (v0.76) (Kruse et al., 2016) https://github.com/vaquerizaslab/tadtool

Homer (v4.6) (Heinz et al., 2010) http://homer.ucsd.edu/homer/

GENOVA (v1.0.0) (van der Weide et al., 2021) https://github.com/robinweide/GENOVA

10X Genomics Cell

Ranger DNA (v1.1.0)

10X Genomics https://support.10xgenomics.com/

single-cell-dna/software/pipelines/latest/

what-is-cell-ranger-dna

AneuFinder (v1.14.0) (Bakker et al., 2016) https://github.com/ataudt/aneufinder

Guppy (v3.3.0) Oxford Nanopore Technologies https://community.nanoporetech.com/sso/

login?next_url= %2Fdownloads

minimap2 (v.2.17-r943-dirty) (Li, 2018) https://github.com/lh3/minimap2

medaka_variant (v0.11.4) Oxford Nanopore Technologies https://nanoporetech.github.io/medaka

NGMLR (v0.2.7) (Sedlazeck et al., 2018) https://github.com/philres/ngmlr

Sniffles (v1.0.9) (Sedlazeck et al., 2018) https://github.com/fritzsedlazeck/Sniffles

bcftools (v1.9) (Danecek et al., 2021) https://samtools.github.io/bcftools/

bowtie (v1.1.0) (Langmead et al., 2009) http://bowtie-bio.sourceforge.net/index.

shtml

SAMtools (v1.10) (Li et al., 2009) http://www.htslib.org

BEDtools (v2.26.0) (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

PeakRanger (v1.16) (Feng et al., 2011) http://ranger.sourceforge.net

Enriched Domain Detector (EDD) (Lund et al., 2014) https://github.com/CollasLab/edd

chromHMM (v1.10) (Ernst and Kellis, 2012) http://compbio.mit.edu/ChromHMM/

Trim Galore (v0.4.0) Babraham Institute https://www.bioinformatics.babraham.ac.

uk/projects/trim_galore/

STAR (v2.5.3a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

rsem (v1.2.21) (Li and Dewey, 2011) http://deweylab.github.io/RSEM/

edgeR (v3.12.1) (Robinson et al., 2010) https://bioconductor.org/packages/

release/bioc/html/edgeR.html

GSEA (v4.1.0) (Subramanian et al., 2005) & (Mootha et al.,

2003)

http://www.gsea-msigdb.org/gsea/

SeqPlots (Stempor and Ahringer, 2016) https://github.com/Przemol/seqplots
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Susan

Clark (s.clark@garvan.org.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Data generated in this study have been deposited at NCBI Gene Expression Omnibus (GEO) and are publically available as of

the date of publication. Accession numbers are listed in the Key resources table. This paper analyses existing, publically avail-

able data. Accession numbers for public datasets are also listed in the Key resources table.

d All custom code has been deposited at https://github.com/qianxidu/Replication_Timing_Du_et_al_2021 (https://doi.org/10.

5281/zenodo.5240900) and is publically available as of the date of publication.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

HCT116 and DKO1 cells were kindly provided by Prof. Stephen Baylin (The Johns Hopkins School of Medicine, The Sidney Kimmel

Comprehensive Cancer Center). HCT116 human male colorectal cancer cells were cultured in McCoy’s 5A modified medium

(GIBCO, #16600-082) supplemented with heat inactivated fetal bovine serum (10%, GIBCO, #16000-044) at 37�C and 5%CO2. Cells

at 70%–80% confluency were rinsed in PBS (1x Phosphate-buffered saline, GIBCO, #14190-144) and trypsinised in Trypsin-EDTA

(0.05%, GIBCO, #15400054). Trypsin was inactivated using equal volume growth medium and cells were pelleted at 250xg for 5 min.

Cells were resuspended in growth medium and typically split 1:8. HCT116 with double knockouts (KO) in DNMT1 and DNMT3B

(DKO1) (Rhee et al., 2002) were selected in growth medium supplemented with hygromycin (0.05 mg/mL, GIBCO, #10687-010)

and geneticin (0.1 mg/mL, GIBCO, #10131) for 1 week after thawing to ensure a pure KO population, then further cultured without

selection. DKO1 cells were subcultured following the same protocol as for HCT116 above, typically at a 1:4 split. HCT116 and

DKO1 cells were validated for double knock out of DNMT1 and DNMT3B using western blot and expression qRT-PCR (Figures

S1I–S1K).

METHOD DETAILS

Expression qRT-qPCR of DNMT genes
RNA was extracted from cultured cells using TRIzol (Life Technologies, #15596018) and DNaseI treated (NEB, #M0303) as per

manufacturer’s instructions. cDNA was generated from 500 ng of RNA using SuperScript III reverse transcriptase (Invitrogen,

#18080-044) and random hexamers according to manufacturer’s instructions. 1 mL of RNA sequins (Hardwick et al., 2016) (mix A,

1:100 dilution) was spiked in to RNA samples prior to making cDNA to be used as negative controls for qRT-PCR. Primers to

DNMT1 were designed to exons present in both the full transcript and the hypomorphic product present in DKO1 cells (See Key re-

sources table). Primers to DNMT3A and -3Bwere designed to capture the majority of transcripts annotated by the GENCODE genes

v19 track in UCSC Genome Browser (Kent et al., 2002) (See Key resources table). All primer pairs were designed over an intron to

avoid genomic products.

Western blotting for DNMT proteins
Whole cell protein lysates were prepared by resuspending scaped cells in modified RIPA buffer (50 mM Tris-HCL pH 7.5, 150 mM

NaCl, 1 mM EDTA, 1 mM NaF, 1 mM Na3VO4, 1% Igepal, 0.25% Sodium-deoxycholate) with protease inhibitors and incubated

on ice for 30 min with vortexing every 5 min. Lysate was sonicated for 15 s at 25% amplitude with a microtip using the QSonica

(Q55) and stored at �80�C. Protein concentration was determined using a BCA assay (Pierce, #23225) according to manufacturer’s

instructions. Protein lysate was prepared using NuPAGE� LDS sample buffer (Life Technologies, NP0007) and NuPAGE� sample

reducing agent (Life Technologies, NP0004) followed by heating at 95�C for 10 min. Samples were resolved by gel electrophoresis

using the NuPage Bis-Tris 4%–12% precast gel system according to the manufacturer’s instructions (Life Technologies). Western

blot transfer was carried out according to the manufacturer’s instructions with the SureLock X-cell system (ThermoFisher Scientific)

using transfer buffer containing 20%methanol content. Antibodies used are as follows: N-terminal DNMT1 – Sigma-Aldrich #D4692;

C-terminal DNMT1 – Abcam #ab92314; GAPDH – Invitrogen #AM4300. Western blots (WBs) were then treated with Western Light-

ning Plus-ECL (Perkin Elmer, #NEL103E001) before developing on Super Rx Fuji Medical X-Ray Film (Fujifilm, #4741019236) using

the Konica Tabletop X-Ray Film Processor (#SRX101A). Developed film was scanned using the Epson Perfection V800/850 scanner.
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ImageJ was used to quantitate WB films following the Gel Analysis method outlined in their documentation. Band densities of the

protein of interest were divided by the loading control and converted to a percentage of the highest ratio (most dense band compared

to loading control). Average and standard error of the mean were calculated for replicates.

Nanopore sequencing and base calling
HCT116 andDKO1DNA (1 mg) was sheared using the Covaris g-TUBE spun at 3400 x g in 23 60 s spins. Sheared DNAwas prepared

for Nanopore sequencing using the Ligation 1D kit (SQK-LSK109) according to manufacturer’s instructions. Each cell line was

sequenced on one PromethION flow cell. Reads were base called with Guppy (v3.3.0) on a GPU-enabled Sun Grid Engine high

performance computing server (parameters ‘‘–chunks_per_runner 1500–gpu_runners_per_device 1–cpu_threads_per_caller 4 -x

‘‘cuda:0 cuda:1 cuda:2 cuda:3’’ -r’’ and configuration ‘‘dna_r9.4.1_450bps_hac_prom.cfg’’).

Calling structural variants
Structural variants (SVs) were called using both Nanopore and single cell DNA sequencing (scCNV) datasets. Analysis was limited to

autosomes and chrX. For Nanopore, fastq files were mapped with NGMLR (v0.2.7, (Sedlazeck et al., 2018)) to hg19. DKO1 bam file

was downsampled to match median coverage of HCT116. Sniffles (v1.0.9, (Sedlazeck et al., 2018)) was used to call structural var-

iants (SVs) using parameters ‘—genotype –cluster’. SVs were filtered as follows: ‘FILTER = PASS’, larger than 50bp, allele frequency

over 30%. Due to the imprecise breakpointmapping of Nanopore data, SVswere considered the same betweenHCT116 andDKO1 if

they reciprocally overlapped by 50% and were of the same SV type (Zhou et al., 2019). For single cell DNA sequencing datasets,

consensus copy number variations for HCT116 and DKO1 G1 cells were generated by the Chromium 10X Cell Ranger DNA pipeline

(v1.1.0) (‘node_unmerged_cnv_calls.bed’). Bins (20kb) with any copy number change and with confidence scores greater than or

equal to 5 were counted as variable between HCT116 and DKO1. SVs that differ between HCT116 and DKO1 from both Nanopore

and scDNA datasets weremerged. Due to the scale of replication timing (50kb sliding windows) andHi-C data (20kb bins), SV regions

were considered for removal if they were equal to or over 10kb in width.

Whole genome bisulphite sequencing and processing
200 ng of DNA was bisulphite converted using the EZ DNA Methylation-Gold Kit (Zymo, #D5005) according to manufacturer’s in-

structions. Input DNA was spiked with unmethylated lambda DNA (0.5%) (Promega, #D1521). Replicate bisulphite libraries were

generated with the CEGX TrueMethyl� Whole Genome Kit (CEGX, #CEGXTMWG, v3.1) according to manufacturer’s instructions.

Libraries were sequenced on the Illumina X Ten. Sequencing reads from WGBS data were aligned to the human genome using

v1.2 of an internally developed pipeline Meth10X (Nair et al., 2018). This is publicly available and can be downloaded from https://

github.com/luuloi/Meth10X. The pipeline backbone is built based on workflow control Bpipe (v0.9.9.2) (Sadedin et al., 2012). Briefly,

adaptor sequences were removed using in-house bash script in paired-end mode following library prep kit guide. Bwa-meth (v0.20)

(Pedersen et al., 2014) was then used to align reads to hg19 using default parameters. The generated bam files were marked for du-

plicates using Picard (v2.3.0) (http://broadinstitute.github.io/picard). Bam files were then quality checked using Qualimap (v2.2.1)

(Okonechnikov et al., 2016). Count tables of the number of methylated and unmethylated bases sequenced at each CpG site in

the genome were constructed using MethylDackel (https://github.com/dpryan79/MethylDackel) and Biscuit (https://github.com/

zhou-lab/biscuit). Biscuit was used to call SNPs that were discounted from the final table. Sequencing metrics can be found in Table

S2. Downstream analyses were limited to autosomes and chrX. Partially methylated domains (PMDs) were called using MethPipe

(v3.4.2) (Song et al., 2013). Total methylation levels were calculated by dividing the sum of all C calls with the sum of all C+T calls

and CpGs with a minimum coverage of 5 were used for downstream analyses.

Repli-Seq data generation and processing
Repli-Seq was performed in duplicate for each cell line as previously described with slight modifications (Du et al., 2019). Briefly, cells

were labeled with BrdU (50 mM, Sigma, #B5002) for two hours. Labeled cells were sorted into 6 fractions across the cell cycle (G1b,

S1, S2, S3, S4, G2M) as per protocol on the FACS Aria III. DNA extraction and BrdU-labeled DNA immunoprecipitation were per-

formedwith anti-BrdU antibody (40 mL of 25 mgmL-1, BD PharMingen, #555627). Validation of BrdU immunoprecipitation was carried

out using qRT-PCR on known Early (BMP1) and Late (DPPA2) loci, and compared to a fractionation negative control (MITO) (Figures

S1A and S1B). As the mitochondrial genome (MITO) replicates independently of the nuclear genome, it should not show differences

between S-phase fractions. 10 ng of ssDNA was used as input for the Epicenter EpiGnome Methyl-Seq Kit (Illumina, EGMK81312,

now called the TruSeq�DNAMethylation kit) and processed according tomanufacturer’s instructions. The ssDNAwas not bisulphite

converted prior to library preparation. Libraries were sequenced on the HiSeq 2500 as 50bp single-end reads. Full sequencing out-

puts can be found in Table S3.

Replication timing weighted average (WA) scores were calculated as previously described (Du et al., 2019). Bins overlapping SVs

were removed prior to downstream analyses. WA values for replicates of HCT116 and DKO1 were highly correlated (r2 values > 0.99)

(Figure S1C). The distributions ofWA scores were comparable to theWAdistributions in other normal and cancer cell Repli-Seq data-

sets (n = 16) (Figure S1D). To get a single score per cell line, replicate HCT116 and DKO1 weighted average (WA) replication timing

scores were quantile normalized and the replicates averaged. Early- and late-replicating regions were defined as those regions in

the top and bottom 10% of WA scores in both cell lines. This definition gives upper and lower limits of 77.61 and 16.10 respectively
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(i.e., early regions haveWA > 77.76 and late regionsWA < 16.07). The limits were rounded to 78 and 16 for downstream analyses.WA

thresholds for a change in timing were were calculated as previously described (Du et al., 2019). Differences inWA that are larger than

± 15 DWA are therefore considered to show a robust change in replication timing (Figures S1E and S1F). To identify domains of loci

with changed replication timing, wemerged all loci within 50kb that had |DWA| > 15. This approach gave 169 earlier domains and 116

later domains called between HCT116 and DKO cells.

Defining partially methylated domain boundary shifts
Partially methylated domains (PMDs) were called from WGBS data using the package MethPipe (v3.4.2) (Song et al., 2013). To call

PMD regions for HCT116 and DKO1, first, replicate PMD regions were merged and any regions smaller than 50kb were removed.

Then regions were merged if they were within 50kb of each other. The cut-off of 50kb was used because this is the resolution of

the replication timing data. SVs were removed from PMDs prior to downstream analyses. To define PMD boundary shifts, we first

calculated which PMD regions overlap between HCT116 and DKO1, then calculated the distance between the 50 start coordinate
of the HCT116 PMD to the 50 start coordinate of the DKO1 PMD. The same was repeated for the 30 end coordinate. The 50 and 30

coordinates were then categorised by the degree of shift inward from the HCT116 to DKO1 into 4 categories, < 50kb, 50-200kb,

200-500kb, > 500kb. Due to the low numbers of regions within the larger shift categories, 50 and 30 regions were pooled prior to plot-

ting the changes in replication timing and DNA methylation.

Hi-C library preparation
Hi-C data in triplicate was generated using the Arima-HiC kit, according to themanufacturers protocols (Cat. #A510008). Briefly, cells

were cross-linked with 2% formaldehyde to obtain 1-5 mg of DNA per Hi-C reaction. The Arima kit uses two restriction enzymes:

^GATC (DpnII), G ÂNTC (N can be either of the 4 genomic bases) (HinfI), which after ligation of DNA ends generates 4 possible ligation

junctions in the chimeric reads: GATC-GATC,GANT-GATC,GANT-ANTC, GATC-ANTC. Hi-C libraries were prepared using the KAPA

Hyper Library Prep Kit with a modified protocol provided by Arima with 12 PCR cycles for library amplification as required. Hi-C

libraries were sequenced on Illumina HiSeq X Ten in 150bp paired-end mode.

Hi-C data processing
HiC-Pro (Servant et al., 2015) (v2.11.4) was used to align and filter the Hi-C data, identify chromatin interactions, and generate Hi-C

heatmaps. To generate filtered Hi-C contact matrices, the Hi-C reads were aligned against the human reference genome (hg19) and

corrected using the ICE ‘‘correction’’ algorithm (Imakaev et al., 2012) built into HiC-Pro. Statistics on the number of read pairs, valid

interactions and interactions in cis are presented in Table S4. Contact matrices used in down-stream analysis were Knight-Ruiz (KR)-

normalized using JuiceBox tools (Durand et al., 2016a, 2016b) using Hi-C contact matrices in .hic format generated by hicpro2jucie-

box script in HiC-Pro as input. Obtained Hi-C matrices and Pearson correlation matrices were visualized in JuiceBox (Durand et al.,

2016a). Public mouse Hi-C datasets from Nothjunge et al. (2017) was mapped to mouse reference genomemm10 and processed as

above. Hi-C datasets from patient-derived xenograft (PDX) tumor mouse models were mapped to human reference genome hg38

and processed as above.

TADs
KR-normalized contact matrices were retrieved from Juicer for all chromosomes at 40kb resolution and TADs were identified using

TADtool with the insulation score algorithm (Kruse et al., 2016). Analyses were limited to autosomes and chrX. We called TADs with a

window size value of 103kb and a TAD cutoff of 30. We found that these parameters show good agreement between identified TADs

and visual inspection of Hi-C datasets in JuiceBox and TADtool. The exact SV region was removed from TADs prior to downstream

analyses.

A/B compartments
Compartment analysis was performed using the Homer pipeline (Heinz et al., 2010) (v4.6) with Hi-C KR-normalized contact matrices

as input. Homer performs a principal component analysis of the normalized interaction matrices and uses the PC1 values to predict

regions of active (A-compartments) and inactive chromatin (B-compartments). Homer works under the assumption that gene-rich

regions have similar PC1 values, while gene-poor regions show differing PC1 values and assigns compartment status based on

genome-wide gene density. Bins overlapping SVs were removed prior to downstream analyses.

Defining domains of genome reorganization
We initially tried to define genome reorganization through A/B compartment switching using compartments defined by HOMER.

However, we observed that a large proportion of compartment switches were centered around PC1 values of zero, close to the

A/B boundary; 46.94% of A to B switches occur where HCT116 PC1 < 0.5 and DKO1 PC1 > �0.5, and 42.87% of B to A switches

occur where HCT116 PC1 >�0.5 and DKO1 PC1 < 0.5 (Figure S2E). This indicates that although compartment switches do cross the

midline that defines A versus B compartments, a large proportion of these switches show little difference in PC1 values between

HCT116 and DKO1 (Figure S2F). Therefore, we defined regions of genome organization change by their DPC1 score, with a cut-

off of DPC1 R |1|. PC1 values were quantile normalized and then the cutoff was defined by first examining DPC1 values within
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replicates of HCT116 or DKO1 Hi-C datasets, then determining the DPC1 values where less than 5% (2.5% either tail) of the genome

would be called ‘differential’ among the replicates (Figure S2G). Called domains were merged if within 50kb.

Hi-C compartment strength calculation
A/B compartment strengths were calculated as previously described (Stadhouders et al., 2018). Briefly, 100kb iterative corrected

matrices were generated by HiC-Pro using the hicpro2juicebox utility. Bins overlapping SVs were removed prior to iterative correc-

tion. 100kb bins were grouped into 50 percentile groups based on their PC1 (1st eigenvector) value. Within pairwise combinations of

the 50 percentile groups, average contact enrichments (obs/exp) between bins were calculated using GENOVA (v1.0.0, https://

github.com/robinweide/GENOVA). Log2 of the contact enrichment scores were plotted as a heat saddle plot. Summarized A-A

and B-B compartment strengths were calculated as the mean log2 contact enrichment between the top (A-A) or bottom (B-B)

20% of PC1 percentiles, and between the top and bottom 20% of PC1 percentiles for A-B compartment strength, excluding chrY

and chrM. The compartmentalisation score was calculated as previously described using mean contact enrichments for A-A, B-B

and A-B following this formula: log(A-A*B-B/A-B2) (Alavattam et al., 2019).

Weighted variance calculation for Repli-Seq fractions
The 6-fraction Percent-normalized Density Values (PNDVs) were used for this calculation. Briefly, PNDV values for one fraction repre-

sent the % of replication occurring within that timing fraction at any given 1kb locus. For example, the PNDV values for a locus are

G1b = 40, S1 = 38, S2 = 9, S3 = 3, S4 = 4, G2M= 6. Thismeans that 40%of this locus is replicated in the G1 fraction, 38%of this locus

is replicated in the S1 fraction etc. This locus is biased or ‘weighted’ toward early replication timing. The sum of all fractions for any

locus adds up to 100%. We made the assumption that if replication occurs evenly throughout S-phase, then each fraction from G1b

to G2M should increment by 16.67% (i.e., 100%/6 fractions) to give G1 = 16.67, S1 = 33.33, S2 = 50.00, S3 = 66.67, S4 = 83.33, G2 =

100. This represents a ‘neutral’ locus that is unbiased or unweighted toward either early or late replication timing. The incremental

nature of the ‘neutral’ locus informs the order of the S-phase fractions. A real locus is biased or ‘weighted’ toward early or late repli-

cation. To perform the weighted variation calculation, the PNDV values for each loci is used as the ‘weights’ against the pseudo

‘neutral’ locus, giving a measure of how the locus deviates from the ‘neutral’ locus. Formulae can be found in Figure S4C and

S4D and a table of calibration tests can be found in Table S5. The weighted variance score was discretised for visualization purposes

(Figure 5) into 4 bins from 0 to 0.081 in 0.02 intervals and called var1-4.

Single cell replication timing
Cell sorting and library generation using Chromium 10X single cell CNV solution.We stained HCT116 and DKO1 cells using a live cell

double stranded DNA dye, Vybrant DyeCycle Violet Ready Flow (Invitrogen, #R37172), according to manufacturers’ instructions.

Cells were sorted (FACS Aria III) into 4-fractions: G1, Early, Mid and Late (Figure S5A). Equal numbers of Early, Mid and Late cells

were pooled prior to use in the Single Cell CNV system to meet the minimum recommended cell recovery number (250 cells). We

aimed for 500 recovered cells. As we did not need as many G1 cells or a specific number of G1 cells, G1 cells were loaded below

minimum recommended cell stock concentration and we aimed for 50 recovered cells. Single cell capture, library generation and

sequencing were performed by the Garvan-Weizmann Centre for Cellular Genomics (GWCCG). Libraries were sequenced on an

Illumina NovaSeq 6000 S4 flowcell (200 cycles).

Read mapping and filtering. Data was mapped and processed using the 10X Genomics Cell Ranger DNA (v1.1.0) software with

default parameters, using the hg19/GRCh37 reference genome. Bam files generated by Cell Ranger DNA was split into individual

cells/barcodes using SAMtools (Li et al., 2009) (v1.10) and filtered to remove duplicates and MAPQ < 10 reads with SAMtools,

and reads overlapping hg19 blacklist (DAC) regions with BEDtools (Quinlan and Hall, 2010) (v2.26.0). Cells/barcodes with less

than 1 M reads were discarded. A summary of sequencing metrics can be found in Table S6.

scRepli-Seq processing.We used a modification of previously described single cell Repli-Seq (scRepli-Seq) methods ((Dileep and

Gilbert, 2018; Takahashi et al., 2019) & https://github.com/kuzobuta/scRepliseq-Pipeline) with the following adjustments. Analysis

was limited to autosomes.

1) Cells were filtered usingmedian-absolute-deviation (MAD) scores, where G1 cells < 0.3 and S-phase cells > 0.4 and < 0.8 were

kept for further analysis. MAD scores were calculated in non-overlapping 200kb bins. Reads were counted using binReads

command from scCNV R package AneuFinder (Bakker et al., 2016) (v1.14.0). ‘mappable_regions.bed’ output fromCell Ranger

DNA was used to generate a merged unmappable bed file of HCT116 and DKO1 for further read filtering within the binReads

command. This applies to all further use of the binReads command.

2) A control dataset representing baseline copy number variations (CNVs) and mappability for S-phase cell comparison was

created by merging high-quality G1 cells. CNVs in G1 cells were identified using AneuFinder findCNVs in 500kb bins as

described by Takahashi et al. (2019). ‘spikiness’ and ‘bhattacharyya’ quality measures was obtained using the clusterByQuality

command in AneuFinder. Cells were removed if spikiness > = 0.21 and bhattacharyya% 1. Cells were also removed if deemed

‘noisy’ by Cell Ranger DNA. 48/67HCT116G1 and 55/84 DKO1G1 cells passedQC andweremerged for further use. To obtain

a CNV baseline representative of all cells within the cell population, regions with CNV heterogeneity were removed from further

analysis. Heterogeneous regions were defined as those with heterogeneity score > 0.2, calculated from the 500kb CNV data
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using the karyotypeMeasures command in AneuFinder. karyotypeMeasures was modified to output heterogeneity score per

bin. Heterogeneous regions and SVs from HCT116 and DKO1 were merged and removed from all further analyses.

3) Single cell data was normalized against the merged G1 control data. G1 and S-phase cell reads were binned in non-overlap-

ping 80kb bins and in 200kb bins at 40kb sliding intervals using AneuFinder binReads. Read counts were normalized using the

correctMappability command from AneuFinder (copied from v1.5.0), using the merged G1 data as reference control.

4) Single cell RT scores were generated from the mappability-corrected 200kb bin-40kb sliding window data as described in Ta-

kahashi et al. (2019). Single cell replication timing profiles are similar to whole population Repli-Seq timing profile (Figure S5B).

Single cell RT scores were used to generate Pearson’s correlation matrix, hierarchical clustering (ward.d2) and tSNE plot as

described in Takahashi et al. (2019). At this point, any S-phase cells that cluster with G1 in the hierarchical clustering or in

the tSNE plot were removed from further analysis. 322/646 HCT116 S and 208/582 DKO1 S cells were used for further analysis.

5) Mappability-corrected 80kb bin data was binarized using the findCNVs command in AneuFinder. We used the following

parameters: method = ’’HMM,’’ max.iter = 3000, states = c(‘‘zero-inflation,’’ ‘‘0-somy,’’ ‘‘1-somy,’’ ‘‘2-somy’’), eps = 0.01,

most.frequent.state = (‘‘1-somy’’ or ‘‘2-somy’’). The findCNVs command outputs a 2-state HMM model were states ‘1’ and

‘20 indicates un-replicated and replicated, respectively. Within the findCNVs command, Takahashi et al. (2019) specifies

whether the most common state is 1-somy (unreplicated) or 2-somy (replicated) depending on FACS gating to reduce

HMM calling ambiguity, i.e., a Early cell would have majority state ‘1’ and a Late cell would have majority state ‘20. However,

as Early, Mid and Late S-phase cells were pooled here, we could not directly assign whether 1-somy or 2-somy was the most

common state. Therefore, we generated two HMMmodels per cell, specifying either 1-somy or 2-somy as the most common

state. For most cells, the two HMM models had little to no difference in binarisation. These tended to be Mid-S cells (Fig-

ure S5C). We determined that a cell had ‘evenHMM’ if the absolute differences in bin numbers between 1-somy state ‘1’

and 2-somy state ‘1’ is less than 1,500 bins, and the same for state ‘20. A cell was ‘unevenHMM’ if the absolute differences

were greater than 1,500 bins for both states. The cutoff of 1,500 bins was conservatively chosen to separate the two groups

based on the distribution of bin number differences between 1-somy and 2-somy calls of the same state. This distribution was

bimodal, with one group centered around 0 (‘evenHMM cells) and the other peak centered around 15,000-20,000 (‘un-

evenHMM’ cells) (Figure S5D). ‘unevenHMM’ cells were then assigned as Early or Late through visual comparison of the

HMM bed file against the earliest and latest ‘evenHMM’ cells. For final HMM calls, we used the 2-somy calls for ‘evenHMM’

cells, the 1-somy calls for ‘unevenHMM’ cells that were assigned as Early and the 2-somy calls for ‘unevenHMM’ cells that

were assigned as Late. Binarized 80kb data was then used to generate the % replication score per cell, single cell RT value

per bin, cell-to-cell variability scores and RT sigmoid modeling (gain and M values) (Dileep and Gilbert, 2018; Takahashi

et al., 2019). For calculation of the slope of the sigmoid model (gain), we used the value 100 as the maximum value of the sig-

moid (Dileep and Gilbert, 2018). The M-value is the x-intercept at the sigmoid’s midpoint and represents when 50% of the cell

population has replicated that locus.

Identifying biphasically replicating loci
Loci were called as biphasic if their weighted variance score wasR 0.081. Calibration tests of the weighted variance score showed

that a score of�0.081 is achieved for a locus with even replication timing across all 6 fractions (Table S5, ‘even’), and a score above

�0.081 represents loci where there were high PNDV values in non-adjacent fractions separated by in-between fractions of low PNDV

values (Table S5). The cut-off of 0.081 does miss some biphasic regions with smaller separations between high PNDV fractions,

hence, the use of the Hansen score described below. Biphasic loci were also identified according to Hansen et al. (2010). Briefly,

the 6-fraction PNDV scores were reduced to 5 fractions by pairwise addition of adjacent fractions (G1b+S1, S1+S2, S2+S3,

S3+S4, S4+G2M). A 1kb locus was deemed biphasic if more than 40% of the 5-fraction score was in non-adjacent fractions. For

example, a locus is biphasic if R 40% of the score is in G1+S1 and R 40% is in S2+S3, S3+S4 or S4+G2, with S1+S2 < 40%.

Biphasic loci are defined asmaintainedwhere at least oneHCT116 replicate and one DKO1 replicate are biphasic. Biphasic loci are

defined as gainedwhere no HCT116 replicates are biphasic and at least one DKO1 replicate is biphasic. Biphasic loci are defined as

lost where at least one HCT116 replicate is biphasic and no DKO1 replicates are biphasic.

Allelic replication timing
Nanopore read alignment, variant calling and phasing. HCT116 and DKO1 Nanopore base called reads (fastq) were aligned to hg19

usingminimap2 (Li, 2018) (v.2.17-r943-dirty) with parameters ‘‘-axmap-ont.’’ Mapped reads were sorted and indexed with SAMtools

(v1.9). Variants were called and phased with medaka_variant (v0.11.4, https://nanoporetech.github.io/medaka) with the options ‘‘-t

36 -s r941_prom_high_g330 -m r941_prom_high_g330 -p -b 100.’’

Variant filtering, haplotype mapping and Repli-Seq processing. Medaka variants were filtered as follows using bcftools (v1.9): i)

occurs in both HCT116 and DKO1 datasets; ii) quality score above 20; iii) within each dataset, only phased heterozygote single nucle-

otide variants (SNVs) were used. hg19 reference genome fasta files were generated for each haplotype per cell line using bcftools

consensus (parameters ‘‘-H 1pIu’’ and ‘‘-H 2pIu’’). Repli-Seq fractions weremapped to each haplotype reference genome using bow-

tie (Langmead et al., 2009) (v1.1.0, parameters ‘‘-v 0 -m 1–tryhard–best–strata–time–trim5 6’’). Mapped bam files were filtered for

reads that overlapped phased SNVs using SAMtools view (v1.9, option ‘‘-L’’). Weighted average scores were calculated from filtered

bam files as described above with the following modifications: i) Reads were counted in 50kb sliding windows at 1kb intervals,
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excluding chrY and chrM. The 50kb sliding windows were modified so that only reads within each haplotype block were counted for

each block. Bins overlapping SVs were removed prior to downstream analyses; ii) The low coverage threshold for 50kb windows was

set to at least 4 reads per fraction per 50kb loci.

Calling allelic differentially timed regions. Allelically replicating regions were called if there was a WA difference of less than 10

between replicates and more than 30 between alleles. Due to the sparseness of allelically mapped regions, allelic regions were

merged if within 1 Mb of each other. The 1 Mb merged region was used to identify overlapping genes.

Imprinted gene and cancer-related gene annotation. A list of human imprinted genes was obtained from https://www.geneimprint.

com (Luedi et al., 2007). Genes located in allele-specific replication regions were also checked against the Candidate Cancer Gene

Database (Table S1) (http://ccgd-starrlab.oit.umn.edu) (Abbott et al., 2015).

Profile plots
We used SeqPlots (Stempor and Ahringer, 2016) to calculate average scores over regions of interest, then used ggplots (Wickham,

2016) to plot the average scores across all regions for each bin with standard error and confidence intervals.

ChIP-seq processing
ChIP-seq datasets were processed as previously described (Bert et al., 2013; Taberlay et al., 2014). Briefly, ChIP-seq reads were

aligned to hg19 using bowtie (Langmead et al., 2009) (v1.1.0) allowing up to 3 mismatches, discarding ambiguous and clonal reads.

All histone ChIP-seq peaks were called using PeakRanger (Feng et al., 2011) (v1.16). For the distribution of histone mark occupancy

across replication timing, consensus peaks were used where replicates were available. Broad domains of histone mark enrichment,

H3K4me3 and H3K9me3, were processed with Enriched Domain Detector (EDD) (Lund et al., 2014) (settings: required_fraction_

of_informative_bins = 0.9, p_hat_CI_method = normal). Replicate-shared domain for H3K9me3were called using the ‘intersect’ func-

tion (R, GenomicRanges v1.22.4 (Lawrence et al., 2013)), before calling regions of maintenance (‘intersect’ between HCT116 and

DKO1), gain and loss (‘setdiff’ between HCT116 and DKO1). H3K4me3 domains that exist only in DKO1 (replicate merged) were in-

tersectedwith H3K9me3 domain regions and used for further analyses. The exact SV regionwas removed from histone domains prior

to downstream analyses.

ChromHMM analysis
15-state ChromHMM tracks for HCT116 and DKO1 were called based on the Roadmap Epigenomics 15-state chromHMM model

(Kundaje et al., 2015) using the chromHMM program (v1.10) (Ernst and Kellis, 2012). ChIP-seq data was prepared for segmentation

by first using ‘bamToBed’, followed by ‘BinarizeBed’. Replicates were pooled at the bamToBed stage. The Roadmap 15-state model

parameters were then applied to produce 15-state segmentations for HCT116 and DKO1. Analysis of ChromHMMchange-of-state is

based on Fiziev et al. (2017). To calculate ChromHMM state change enrichment scores, we divided the number of observed state

changes by the number of expected changes as outputted by the chisq.test in R. Two-sided p values were calculated from the chis-

q.test standard residuals (similar to the z-score) and FDR corrected. To control for reciprocal state changes (i.e., Het to TssA versus

TssA to Het in the direction of HCT116 to DKO1), the enrichment scores of Het-TssA was divided by the enrichment score of TssA-

Het. A count of 1 was added to both observed and expected to avoid divisions by 0. Only transitions where both scores were sig-

nificant are shown.

RNA-seq data generation and processing
Total RNA in triplicates (different passages) was extracted from cultured cells using TRIzol (Life Technologies, #15596018). Libraries

were constructed with the Illumina TruSeq Stranded mRNA library preparation kit (Illumina, #RS-122-2102) and sequenced on the

IlluminaHiSeq X Ten. Paired-end readswere processed as previously described (Du et al., 2019) using TrimGalore (v0.4.0, parameter

settings:–fastqc–paired–retain_unpaired–length 16) and STAR (Dobin et al., 2013) (v2.5.3a, parameter settings:–quantMode Tran-

scriptomeSAM) for mapping reads to the hg19 human transcriptome build (GENCODE 19 (Harrow et al., 2012)). Mapped reads where

counted into genes using rsem (v1.2.21) (Li and Dewey, 2011). TMM normalization was applied using edgeR (v3.12.1) (Robinson

et al., 2010). Fold changes (FC) were computed as the log2 ratio of normalized reads per gene using edgeR. Genes with fold change

± 1.5 and FDR < 0.01 were considered as significantly altered. Promoters were defined as the region from �2000 bp to +100 bp

around the transcriptional start site. Genes overlapping SV regions were removed. The GSEA desktop application was used to

perform gene set enrichment analysis against the MolSigDB v7.4 gene sets (Liberzon et al., 2011; Subramanian et al., 2005). TPM

values per replicate per gene were used to generate the Gene Cluster Text file and analysis was performed using the following

parameters: gene set permutation, weighted enrichment statistic and Signal2Noise ranking. Significant pathways (FDR < 0.05)

relevant to the study are shown.

Genomic annotation
Promoters were defined as �2000 bp to +100 bp around the transcription start site from the GENCODE 19 reference transcrip-

tome (Harrow et al., 2012). Exons and introns were called per transcript using the GenomicFeatures (v1.22.13) package in R
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(Lawrence et al., 2013), and merged if overlapping. Intron regions were retained if they did not intersect an exonic region. 50 and 30

UTRs were also called using the GenomicFeatures package, and merged if overlapping. Intergenic regions were defined as the

gaps between the other elements.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details can be found in the figure legends and relevant methods sections, including statistical test, significance cut-offs,

multiple testing correction, number of replicates and precision measures (e.g., error bars). Statistical tests were performed using R

(v3.2.3; R Development Core Team, 2015). Generally, for genomic interval overlaps and genomic rearrangement overlaps, amodified

LOLA (Sheffield and Bock, 2016) packagewas used to perform a two-sided log-odds ratio test which reports significance using ‘‘BH’’

FDR values. The Mann-Whitney-Wilcoxon test was used for 2-group non-parametric comparisons, and the one-tailed test was used

where a directional difference between the groups was of interest. Unless otherwise stated, statistical tests were two-sided.

Permutation tests were used to calculate one-sided p-values for the difference in means of scRepli-Seq scores between HCT116

and DKO1. n = 10,000 permutations were performed.
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