3,727 research outputs found

    China\u27s Foreign Relations: Selected Studies

    Get PDF

    Now or never: perceptions of uniqueness induce acceptance of price increases for experiences more than for objects

    Get PDF
    Seven studies test and support the prediction that consumers are more willing to accept a price increase for an experiential versus a material purchase; an effect explained by the greater uniqueness of experiences. Critically, the uniqueness model advanced here is found to be independent of the happiness consumers derive from the purchase. To gain a deeper understanding of the uniqueness mechanism, this investigation then advances and tests a four-facet framework of uniqueness (unique opportunity, unique purchase, unique identity, and counterconformity). Together, the findings converge on the conclusion that consumers perceive the opportunity to have a particular experience (vs. object) as more unique, and this unique opportunity increases their willingness to accept a price increase. Overall, this work extends the experiential versus material purchases literature into a new domain—that of pricing; identifies the dimension—uniqueness—and its precise facet responsible for the effect—unique opportunity; and demonstrates that this model unfolds in a pattern distinct from the oft researched model centered on consumer happiness. Theoretical and practical implications are discussed.info:eu-repo/semantics/acceptedVersio

    Coherent spin qubit transport in silicon

    Full text link
    A fault-tolerant quantum processor may be configured using stationary qubits interacting only with their nearest neighbours, but at the cost of significant overheads in physical qubits per logical qubit. Such overheads could be reduced by coherently transporting qubits across the chip, allowing connectivity beyond immediate neighbours. Here we demonstrate high-fidelity coherent transport of an electron spin qubit between quantum dots in isotopically-enriched silicon. We observe qubit precession in the inter-site tunnelling regime and assess the impact of qubit transport using Ramsey interferometry and quantum state tomography techniques. We report a polarization transfer fidelity of 99.97% and an average coherent transfer fidelity of 99.4%. Our results provide key elements for high-fidelity, on-chip quantum information distribution, as long envisaged, reinforcing the scaling prospects of silicon-based spin qubits

    Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease

    Get PDF
    In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by beta-secretase to generate a 99-aa C-terminal fragment (C99) that is then cleaved by c-secretase to generate the beta-amyloid (Ab) found in senile plaques. In previous reports, we and others have shown that c-secretase activity is enriched in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) and that ER-mitochondrial connectivity and MAM function are upregulated in AD. We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by c-secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.We thank Drs. Orian Shirihai and Marc Liesa (UCLA) for assistance with the Seahorse measurements, Dr. Huaxi Xu (Sanford Burnham Institute) for the APP-DKO MEFs and Dr. Mark Mattson (NIH) for the PS1 knock-in mice, Drs. Arancio and Teich for the APP-KO mice tissues used in these studies, Dr. Hua Yang (Columbia University) for mouse husbandry, and Drs. Marc Tambini, Ira Tabas, and Serge Przedborski for helpful comments. This work was supported by the Fundacion Alfonso Martin Escudero (to M.P.); the Alzheimer's Drug Discovery Foundation, the Ellison Medical Foundation, the Muscular Dystrophy Association, the U.S. Department of Defense W911NF-12-1-9159 and W911F-15-1-0169), and the J. Willard and Alice S. Marriott Foundation (to E.A.S.); the U.S. National Institutes of Health (P01-HD080642 and P01-HD032062 to E.A.S.; NS071571 and HD071593 to M.F.M.; R01-NS056049 and P50-AG008702 to G.D.P.; 1S10OD016214-01A1 to G.S.P. and F.P.M, and K01-AG045335 to E.A.-G.), the Lucien Cote Early Investigator Award in Clinical Genetics from the Parkinson's Disease Foundation (PDF-CEI-1364 and PDF-CEI-1240) to C.G.-L., and National Defense Science and Engineering Graduate Fellowship (FA9550-11-C-0028) to R.R.A.S

    Characterizing non-Markovian Quantum Processes by Fast Bayesian Tomography

    Full text link
    To push gate performance to levels beyond the thresholds for quantum error correction, it is important to characterize the error sources occurring on quantum gates. However, the characterization of non-Markovian error poses a challenge to current quantum process tomography techniques. Fast Bayesian Tomography (FBT) is a self-consistent gate set tomography protocol that can be bootstrapped from earlier characterization knowledge and be updated in real-time with arbitrary gate sequences. Here we demonstrate how FBT allows for the characterization of key non-Markovian error processes. We introduce two experimental protocols for FBT to diagnose the non-Markovian behavior of two-qubit systems on silicon quantum dots. To increase the efficiency and scalability of the experiment-analysis loop, we develop an online FBT software stack. To reduce experiment cost and analysis time, we also introduce a native readout method and warm boot strategy. Our results demonstrate that FBT is a useful tool for probing non-Markovian errors that can be detrimental to the ultimate realization of fault-tolerant operation on quantum computing

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
    corecore