1,495 research outputs found
Handheld Universal Diagnostic Sensor
The rHEALTH technology is designed to shrink an entire hospital testing laboratory onto a handheld device. A physician or healthcare provider performs the test by collecting a fingerstick of blood from a patient. The tiny volume of blood is inserted into the rHEALTH device. Inside the device is a microfluidic chip that contains small channels about the width of a human hair. These channels help move the blood and analyze the blood sample. The rHEALTH sensor uses proprietary reagents called nanostrips, which are nanoscale test strips that enable the clinical assays. The readout is performed by laser-induced fluorescence. Overall, the time from blood collection through analysis is less than a minute
Nanoscale Test Strips for Multiplexed Blood Analysis
A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth
Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model
The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data
A survey of the broadband shock associated noise prediction methods
Several different prediction methods to estimate the broadband shock associated noise of a supersonic jet are introduced and compared with experimental data at various test conditions. The nozzle geometries considered for comparison include a convergent and a convergent-divergent nozzle, both axisymmetric. Capabilities and limitations of prediction methods in incorporating the two nozzle geometries, flight effect, and temperature effect are discussed. Predicted noise field shows the best agreement for a convergent nozzle geometry under static conditions. Predicted results for nozzles in flight show larger discrepancies from data and more dependable flight data are required for further comparison. Qualitative effects of jet temperature, as observed in experiment, are reproduced in predicted results
Microfluidic Mixing Technology for a Universal Health Sensor
A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital
Transport coefficients from the Boson Uehling-Uhlenbeck Equation
We derive microscopic expressions for the bulk viscosity, shear viscosity and
thermal conductivity of a quantum degenerate Bose gas above , the critical
temperature for Bose-Einstein condensation. The gas interacts via a contact
potential and is described by the Uehling-Uhlenbeck equation. To derive the
transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather
than the Chapman-Enskog approach. This approach illuminates the link between
transport coefficients and eigenvalues of the collision operator. We find that
a method of summing the second order contributions using the fact that the
relaxation rates have a known limit improves the accuracy of the computations.
We numerically compute the shear viscosity and thermal conductivity for any
boson gas that interacts via a contact potential. We find that the bulk
viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.
Quantifying Stock Price Response to Demand Fluctuations
We address the question of how stock prices respond to changes in demand. We
quantify the relations between price change over a time interval
and two different measures of demand fluctuations: (a) , defined as the
difference between the number of buyer-initiated and seller-initiated trades,
and (b) , defined as the difference in number of shares traded in buyer
and seller initiated trades. We find that the conditional expectations and of price change for a given or
are both concave. We find that large price fluctuations occur when demand is
very small --- a fact which is reminiscent of large fluctuations that occur at
critical points in spin systems, where the divergent nature of the response
function leads to large fluctuations.Comment: 4 pages (multicol fomat, revtex
Disordered Heteropolymers with Crosslinks - Phase Diagram and Conformational Transitions
We study the phase behavior of random heteropolymers (RHPs) with quenched
cross-links, a novel polymer class of technological and biological relevance,
and show the possible occurrence of freezing with few chain conformations
sampled. The sensitivity of the frozen phase microstructure to the disorder
components is elucidated at positive solubility parameter values; at low T's
segregated microphases form, while at a finite T, a first order conformational
transition occurs, and is attributed to statistical matching of large
microphases bounded by cross-links. The end of the symmetry broken regime
stabilization by cross-links occurs at a higher T by a second order
conformational transition. \\icrophases form, while at a finite T, a first
order conformational transition occurs, and is attributed to statistical
matching of large microphases bounded by cross-links. The end of the symmetry
broken regime stabilization by cross-links occurs at a higher T by a second
order conformational transition.Comment: 5 pages, 2 ps. figures. submitted to Chem. Phys. Let
A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed
- …
