3,358 research outputs found

    Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring-Closing Metathesis

    Get PDF
    A series of ruthenium catalysts have been screened under ring-closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate series could be run neat, the six-membered carbamate series could be run at 1.0 M, and the seven-membered carbamate series worked best at 0.2−0.05 M

    Constraining ^(26)Al+p resonances using ^(26)Al(^3He,d)^(27)Si

    Get PDF
    The ^(26)Al(^3He,d)^(27)Si reaction was measured from 0°≤θ_(c.m.)≤35° at E(^3He)=20 MeV using a quadrupole-dipole-dipole-dipole magnetic spectrometer. States in ^(27)Si were observed above the background at 7652 and 7741 keV and upper limits were set for the state at 7592 keV. Implications for the ^(26)Al(p,γ)^(27)Si stellar reaction rate are discussed

    Mechanical properties of nanotubes of polyelectrolyte multilayers

    Get PDF
    The elastic properties of nanotubes fabricated by layer-by-layer (LbL) assembly of polyelectrolytes in the nanopores of polycarbonate track-etched membranes have been investigated by resonant contact Atomic Force Microscopy (AFM), for nanotube diameters in the range of 100 to 200 nm. The elastic modulus of the nanotubes was computed from the resonance frequencies of a cantilever resting on freely suspended LbL nanotubes. An average value of 115MPa was found in air for Young's modulus of these nanostructures, well below the values reported for dry, flat multilayers, but in the range of values reported for water-swollen flat multilayers. These low values are most probably due to the lower degree of ionic cross-linking of LbL nanotubes and their consequently higher water content in air, resulting from the peculiar mode of growth of nanoconfined polyelectrolyte multilayers

    Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory

    Full text link
    The non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements is discussed in the framework of density functional perturbation theory. The approach is based on the 2n + 1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the calculation of the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives are examined and their convergence with respect to the k-point sampling is discussed. We apply our method to a few simple cases and compare our results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities

    Multi-channel R-matrix analysis of CNO cycle reactions

    Get PDF
    The CNO cycle is the main process for hydrogen burning in stars somewhat more massive than the Sun. The reaction cross sections at Gamow energies are typically in the femto to pico-barn range and are consequently very difficult to measure experimentally. The CNO reaction rates are based on extrapolations of experimental data from higher energies. We are developing a multi-channel R-matrix code (AZURE) to provide a new and more comprehensive tool for fitting experimental data and making extrapolations to lower energies in all reaction and scattering channels. The 14N(p,γ )15O reaction is the slowest reaction of the CNO cycle and thus it determines the energy production rate of CNO burning. Furthermore, this reaction plays an important role in the determination of Globular Cluster age, since the position of the turnoff point, at which the GC stars escape from the Main Sequence, is powered by the onset of the CNO burning, whose bottleneck is the 14N(p, γ )15O. We have made a reanalysis of the most recent experimental data on the ground state and the 6.18 MeV transitions. The ratio of the cross sections of the 15N(p, γ )16O and 15N(p,α)12C reactions determines how much catalytic material passes to higher CNO cycles and has an effect on the production of heavier elements, particularly 16O and 17O. Simultaneous analysis of both reactions for all channels suggests that the ratio σγ/σα is smaller than previously reported
    corecore