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ABSTRACT: Using the spin-unrestricted coupled-cluster method, we explore the origin of the second Second Hyperpolarizability

hyperpolarizabilities () of singlet dichromium(1I) and dimolybdenum(II) model systems with various
bond lengths as a function of the diradical characters of the do, d77, and dO orbitals. Both systems exhibit
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enhanced y values in the intermediate diradical character region, but by using a partitioning scheme, the ~

P
do electrons are shown to play the essential role in contrast with the s-electrons of conventional @f “\C@‘
organic 7T-conjugated systems. Then, in the equilibrium bond length region, the y values are still
governed by do electrons in the dichromium(II) system, although by dd/dsm electrons in the

dimolybdenum(II) system.
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SECTION: Molecular Structure, Quantum Chemistry, General Theory

In previous studies,' ” we have theoretically proposed open-
shell singlet organic molecules as a novel class of nonlinear
optical (NLO) systems and have revealed that singlet diradical
systems with intermediate diradical characters tend to exhibit
larger second hyperpolarizabilities ¥ (the third-order NLO
properties on the molecular scale) than pure diradical and
closed-shell systems with similar size of sr-conjugation. The
mechanism of this structure—property relationship has been
unraveled by resorting to summation-over-states (SOS) expres-
sions of the static ¥ and of the two-photon absorption cross
section.”” This relationship has also been verified by ab initio
molecular orbital (MO) and density functional theory (DFT)
studies on several model and real molecular systems including
p-quinodimethane model,®> diphenalenyl diradical systems,”
7T-conjugated molecules involving imidazole rings,” graphene nano-
flakes,® and also square planar Ni complexes.” These theoretical
predictions have been confirmed by two-photon absorption
measurements on s—indaceno[1,2,3—cd;5,6,7—c/d/]diphenalene8
and by third-harmonic generation spectrum of 1,4-bis-(4,5-
diphenylimidazole-2-ylidene)-cyclohexa-2,5-diene.”

In transition-metal complexes, d—d orbital interactions often
lead to multiple bonds of do, dmr, and dO characters. These
multiple bonds exhibit diradical characters as shown by Nishino
et al." from spin-unrestricted Hartree—Fock (UHF) and DFT
calculations of the occupation numbers of the do, ds, and do
natural orbitals (NOs) in the naked dichromium(II) model
system. Moreover, the effective bond orders (EBOs) of such
complexes are predicted to be generally smaller than their formal
bond orders; for example, the [ Cr,(0,CCH3),] dichromium (II)
complex has a formal bond order of 4, but its EBO is 1.99.""

v ACS Publications ©2011 american chemical Society

These results indicate characteristic weak metal—metal bonds
and the possible emergence of singlet multiradical character.
Therefore, transition-metal complexes with multiple metal—
metal bonds also appear as promising systems for their third-
order NLO properties, which constitutes the topic of this Letter,
where the y values of two kinds of open-shell singlet metal—
metal bonded systems are investigated to clarify the origin of
from the viewpoint of the multiple diradical characters of do, dr,
and dO orbitals. The direct metal—metal bond contributions to
the NLO properties have not been investigated, except in a few
theoretical and experimental studies on, for example, the
(hyper)polarizabilities of the copper dimer'” and the first
hyperpolarizabilities () of dirhenium complexes'® and penta-
nuclear transition metal clusters,'* none of which having addressed
the relationship between the open-shell character of metal—metal
bond and the NLO properties.

We examine the naked dichromium(II) [Cr(II)—Cr(II)]
model because dichromium(II) complexes with Cr(II)—Cr(II)
bonds are typical metal—metal multiply bonded open-shell
singlet systems with intermediate and strong electron correla-
tions at equilibrium bond lengths.'® The naked dimolybdenum-
(I1) [Mo(II) ~Mo(II) ] model can be regarded as a nearly closed-
shell reference system at equilibrium bond length. Their comparison
was therefore carried out as a function of the metal —metal bond
length. Both systems possess one do, two equivalent dsr, and one
do bonds due to d*—d* interactions but, because of different
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Figure 1. Effects of the bond length (R) on the UHF diradical character
(¥) (a) and on the UCCSD longitudinal second hyperpolarizability ()
(total) (b) of Cr(II)—Cr(II) as well as on their do, d77, and dJ orbital
contributions. Note that y(ds) indicates one of the two equivalent d7
orbital contributions to y. The gray-colored region represents the
equilibrium bond length range (1.77—2.69 A)*"?? of real dichromium-
(II) complexes.

d—orbital overlaps, each of the dg, dsr, and dO orbitals displays a
different diradical character for a given bond length.

The diradical characters of the orbitals [y(dX), where X = 0, 77, 0]
were estimated from the occupation numbers of the UHF NOs,
corrected from spin-contamination using an approximate spin-
projection scheme.'® The SDD basis set'® was employed for Cr,
whereas for Mo, the SDD basis set'” was supplemented with an
additional f polarization function (&¢= 1.0430)"® (referred to as
“SDD(f)” in this Letter). This is required for a balanced treat-
ment because contrary to Cr the SDD basis set for Mo does not
contain f polarization function. We focused on the dominant
longitudinal component y..... (= ) along the bond axis because
the spin polarization occurs in this direction. The y values were
calculated by the finite-field (FF) approach'® at the UCCSD level
of approximation. (See the Supporting Information for details of
calculation methods.) All calculations were performed using the
Gaussian 09 program package.zo

The relationship between the bond length (R) and the
diradical characters [y(dX)] for Cr(II)—Cr(I) is shown in
Figure la. For R = 1.6—3.5 A, the diradical character of the do
orbital is always larger than those of the do and dot orbitals. Then,
the doz orbital shows a larger diradical character than the do orbital

at any bond length except for 1.6 A (y(do) = 0.204 and y(d) =
0.199). Because singlet dichromium(II) complexes can display
Cr—Cr quadruple bonds with bond lengths ranging from 1.773>!
to 2.688 A** depending on the ligands, the diradical characters of
the do and dsr orbitals can be tuned by choosing appropriate
ligands, although the do orbital keeps a large diradical character.
The bond length dependence of y is displayed in Figure 1b,
where the bond length range of real singlet dichromium(II)
complexes is highlighted in gray. It is found that the total y
increases, attains a maximum (7 = 1570 au) at R = 2.8 A, and then
decreases with R. The y value at R = 2.8 A is about eight times as
large as that (y = 188 au) at R = 1.8 A. Although many studies on
metal—metal multiply bonded complexes have focused on the
complexes with short metal—metal bonds from the challenging
viewpoint of creating multiple bonds,” the present results
predict that the complexes with fairly long metal—metal bonds
exhibit larger third-order NLO properties than those with short
bond lengths. This is an advantage of metal—metal bonded
complexes for the design of highly efficient NLO systems.

To clarify the origin of the bond length dependence of y, we
examine the total y values and the d—d interaction contributions
partitioned into those of the dX electrons (y(dX), where X = g,
7, 0) (see Supporting Information for the partitioning method)
(Figure 1b). Note that there is a small difference between the
total v and the y(do) + 2y(dx) + y(dd) sum. It originates from
the contribution of the nearly closed-shell inner-shell electrons,
which is negligible as compared with the total y in the inter-
mediate diradical character region. (See Tables 2S and 3S in
Supporting Information.) Provided R = 1.8 A, y(do) is the
dominant contribution, whereas y(ds) and y(do) are small or
almost negligible at R = 2.4 A. It is also found that y(do)
increases, attains a maximum [} ,.<(d0) = 1570 au at R = 2.8 A,
where y(do) = 0.776], and then decreases with R and y(do). The
y(dr) value is also enhanced in the intermediate y(d7r) region
[¥max(d7T) = 77 au at R = 2.0 A, where y(dor) = 0.576]. Judging
from the bond length dependence of y(d0) as well as of y(do)
(see Table 2S of the Supporting Information), the maximum
y(dd) contribution should show up for a bond length smaller
than 1.6 A. These results indicate that the usual diradical character
dependence of the 7r-electron contribution to ¥ of 77-conjugated
organic molecules is generalized to those of the 0- and d-electron
contributions to .

The bond length dependences of y(dX) for Mo(II)—Mo(II)
(Figure 2a) display for R = 2.0 A the same amplitude ordering as
in the case of Cr(II) —Cr(1I), that is, y(do) < y(d7) < y(dd), but,
for a given R, the diradical characters of Mo(II)—Mo(II) are
smaller than those of Cr(II)—Cr(II) because of the larger d—d
interactions due to the larger d atomic orbital in Mo than in Cr.
The equilibrium bond lengths of real dimolybdenum(II) com-
plexes range from 2.037 to 2.239 A?* and, in that case, the d0
orbital presents an intermediate diradical character [y(dd) =
~0.7 to ~0.8], whereas the do and dm orbitals have small
diradical characters [y(do) = ~0.05—0.1, y(d7) = ~0.05—0.2].
Then, Figure 2b shows the bond length dependences of ¥ and
y(dX). Although Mo(II) —Mo(II) can exhibit a larger ¥, value
(7630 au) than Cr(I1)—Cr(IL), such value will not be achieved
because the corresponding bond length (3.4 A) is well outside
the range of equilibrium bond lengths. Similar to Cr(II) —Cr(1I),
enhancements of y(dX) are observed in the intermediate y(dX)
region for do, dz, and dJ orbitals: y,,,,(do) = 7800 au at R =
3.4 A [y(do) = 0.662], ¥ max(d) =246 au at R = 2.4 A [y(dn) =
0.362], and Ynax(d0) = 159 au at R = 2.0 A [y(dd) = 0.659].
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Figure 2. Effects of the bond length (R) on the UHF diradical character
(y) (a) and on the UCCSD second hyperpolarizability (y) (total) (b,c)
of Mo(II)—Mo(II) as well as on their do, d77, and do orbital contribu-
tions. Note that y(ds) indicates one of the two equivalent dst orbital
contributions to y. The gray-colored re%ion represents the equilibri-
um bond length range (2.04 to 2.24 A) * of real dimolybdenum (II)
complexes.

From Figure 2c highlighting the bond length dependences of
y and y(dX) in the equilibrium bond length region (R =2.0—2.3 A),
it appears that dJ electrons provide the dominant contribution to
y for R=2.0to 2.1 A but decrease with R, whereas the sum of the
two equivalent d7r contributions increases with R and attains the
half of total y value at 2.2 A. In contrast, the do contribution is
not dominant and does not significantly vary in this bond length
region. As a result, unlike for dichromium (II), the y values of real

dimolybdenum(II) complexes with relatively short equilibrium
metal—metal bond lengths are primarily described by d7r and dd
electrons.

Although y(do), y(dx), and y(d0) attain a maximum in the
intermediate y region, their maximum values are very different.
This result can be rationalized by comparing the bond lengths
[Rmax(dX)] giving the maximum 7y(dX) values. Indeed, for a
symmetric two-site diradical system (A"— B") using a basis of two
localized natural orbitals, the SOS y expression is given as a
function of the diradical character y, a direct exchange integral
(K,p), the difference between the onsite and inter-site Coulomb
integrals (U), and the effective diradical distance (Rg,), which is
approximately regarded as the distance between A and B'

4

y = flyn) e (1

where r, = 2K,;,/U. Usually, ry is close to zero, and f(y,0) is
maximum in the intermediate y region, which is the origin of the
y enhancement for singlet diradical systems. y is thus also
strongly affected by Rpa: the longer the bond length, the larger
the y value, but this is not the unique tuning parameter. Indeed,
because y(dX) corresponds to the third-order response of the
two-site diradical system with bonding and antibonding dX
orbitals, ¥ma(dX) also depends on Ry, (dX), the bond length
presenting an intermediate overlap between the d orbitals, and
the difference among ¥ ,4(d0), ¥imax(d77), and ¥4, (d0) comes
from that among R,,.(d0), Ry.x(d7), and Ry,.(d0). More-
over, the Ry, (d0) > Rya(d) > R, (dO) ordering can be
understood by the fact that (i) the lobes of the d,. orbitals,
which form the do orbitals, are oriented along the bond axis,
(ii) those of d,, and d, orbitals, which are the origin of the d7
orbitals, form an angle of 45° with the bond axis, and (iii) those
of d,, orbitals, which build the do orbitals, are perpendicular to
the bond axis. As a consequence, by combining the effects of
both the bond length and of the diradical character, one obtains
the following ordering at equilibrium distances: y (do) > y(dx)
> y(do).

In this Letter, we have theoretically clarified the origin of the y
values in singlet dichromium(II) and dimolybdenum(II) systems
by analyzing the diradical characters of their do, dz, and do
orbitals. The dichromium(II) system exhibits a maximum y value
around the bond length of 2.8 A that primarily originates from
the do electrons because of the intermediate diradical character
of the do orbital. For the dimolybdenum(II) system, although a
similar y(do) exaltation might occur for 3.0 to 4.0 A bond
lengths corresponding to intermediate diradical characters, the
real bond lengths (2.037 to 2.239 A) are much shorter so that d7z
and do electrons give the major contribution to y. Therefore, real
singlet dichromium(II) and dimolybdenum(II) complexes
are “0-dominant” and “r-dominant”/“0-dominant” third-order
NLO systems, respectively. These results on transition-metal
complexes with metal—metal multiple bonds contrast with
previous works on “7z-dominant” third-order NLO systems
based on s-conjugated organic molecules but also highlight
for the first time the existence of both a novel class of
“o-dominant” third-order NLO systems as well as of very unique
“O-dominant” third-order NLO systems. Finally, these results
will also serve as guidelines to elaborate metal—metal multiply
bonded complexes involving ligands, where the latter are ex-
pected to tune the diradical characters as well as to bring their
own, although small, contributions to y.
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