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We present a method for converting a time record of turbulent velocity measured at a point in a flow to a
spatial velocity record consisting of consecutive convection elements. The spatial record allows computation
of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions
in a way that completely bypasses the need for Taylor’s Hypothesis. The spatial statistics agree with the
classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor
microscale. The requirements for applying the method is access to the instantaneous velocity magnitude,
in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time
scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high
intensity flows using three main aspects that distinguish these measurements from previous work in the field;
1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by
directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); 2) The measurement
data are extracted using a correctly and transparently functioning processor and is analysed using methods
derived from first principles to provide unbiased estimates of the velocity statistics; 3) The exact mapping
proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant
distortions caused by Taylor’s Hypothesis. The method is first confirmed to produce the correct statistics
using computer simulations and later applied to measurements in some of the most difficult regions of a
round turbulent jet – the non-equilibrium developing region and the outermost parts of the developed jet.
The proposed mapping is successfully validated using corresponding directly measured spatial statistics in
the fully developed jet, even in the difficult outer regions of the jet where the average convection velocity is
negligible and turbulence intensities increase dramatically. The measurements in the developing region reveal
interesting features of an incomplete Richardson-Kolmogorov cascade under development.

Keywords: Turbulence, Taylor’s hypothesis, temporal energy spectrum, spatial energy spectrum, turbulent
jet, non-equilibrium, Richardson-Kolmogorov cascade

I. INTRODUCTION

Measurements of spatial structures in high Reynolds
number turbulent flows are important for development
and verification of turbulence models and indeed for the
understanding of fundamental properties of turbulence.
Essential to this problem is the measurement of high res-
olution statistical spatial quantities such as moments and
turbulent kinetic energy spectra. Since the overwhelming
number of high resolution measurements are obtained as
time records with a probe located at a fixed point in space
(e.g. hot-wire anemometer, HWA, and laser Doppler
anemometer, LDA), a recurrent problem has been the
conversion of time records into spatial records.
Taylor’s hypothesis (TH) has been an invaluable

method in turbulence research since Taylor presented the
idea in 1938. In his seminal paper1, Taylor proposed
that the spatial fine-scale turbulent velocity structure is
transported by the local mean velocity so quickly that
the small scales do not have time to change, “so that an
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unchanging pattern of turbulent motion is swept past a
stationary probe” (e.g. a hot wire probe). It is then pos-
sible to define a spatial sampling interval dsTH by the
relation dsTH = u1(x0, t) dt, where x0 is the location of

the fixed measurement point (MP), u1(x0, t) is the mean
velocity in the average flow direction at the MP and dt
is the time increment. The temporal record, t ∈ [0, T ],
is mapped into a spatial record s ∈ [0, L] by the linear
transformation:

sTH(t) =

∫ t

t′=0

u1(x0, t′) dt
′. (1)

Under this condition of “frozen turbulence”, the mea-
sured temporal record is interpreted (mapped) as a spa-
tial homogeneous record upstream from the MP. In order
for the statistical quantities to be valid, the method re-
quires local homogeneity along the upstream mean flow
direction.
However, it soon became clear that TH is not adequate

in highly turbulent flows. Lin2 was the first to evaluate
TH in a shear flow, and further investigations of its lim-
itations were presented in subsequent work3–9.
Heskestad10 proposed a generalized form of TH in

which the convection due to the large fluctuating veloc-
ity components was taken into account. Lumley4 further
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examined the magnitude of the various terms of a gen-
eralized TH, which takes into account the fact that all
spatial structures are carried past the probe by larger ed-
dies, and that these eddies form a continuum of scales. He
concluded that the most important effect on the tempo-
ral energy11 spectrum derives from the convection due to
the large energy carrying eddies, the separation between
“large eddies” and “small isotropic eddies” chosen some-
what arbitrarily (but later confirmed more rigorously) as
k1/2π ≫ u′

1/u1, where k1 is the wave number, u′
1 and u1

are the spatial velocity gradient and the mean velocity
in the flow direction, respectively. Lumley further intro-
duced a correction to the spatial spectrum derived by
expanding the characteristic function and keeping only
terms to second order and argued that this correction for
all practical purposes would not exceed approximately
30%.

Over the ensuing years, numerous studies investigated
TH by comparison to measurements. For example, Wyn-
gaard and Clifford5 tested TH by comparing measured
atmospheric data to a Gaussian fluctuating convection
velocity model and to Lumley’s correction. Further im-
portant studies of the relation between temporal and spa-
tial scales were published by e.g. Antonia et al.7, Ten-
nekes12, Thacker13, Champagne14, Zaman and Hussain15

and Mi and Antonia16, to mention just a few.

More recent studies of the errors committed by apply-
ing TH to highly fluctuating velocities as in atmospheric
turbulence were published by E. Gledzer17, who stud-
ied the shape of the spatial energy spectrum resulting
from different correction methods and the exclusion of
the acceleration terms in Navier-Stokes equations. M.
Wilczek and co-workers18 also studied the effect of large-
scale random sweeping velocities on the determination of
the Kolmogorov constant.

Our method relies on the simultaneous measurement
of the desired flow quantity and the magnitude of the
instantaneous velocity vector. We propose that the in-
stantaneous velocity magnitude is the relevant quantity
that transports the fluid properties such as small scale

velocity structures as well as scalar quantities such as
e.g. temperature and particle concentration past a sta-

tionary probe and thus should be the quantity relevant for
a mapping of temporal records into spatial ones. The idea
seems to have occurred to just a few researchers in the
past, possibly because of the perceived difficulties such as
simultaneous 3D measurements of velocity components
and the resulting irregular spatial sampling intervals that
preclude the use of the fast Fourier transform. R. J.
Hill19 considers a 3D measurement of the short-time av-
eraged mean velocity to obtain the velocity in a coordi-
nate system turning with the instantaneous flow direc-
tion from which the velocities in the lab-coordinates can
be obtained. However, he dismisses the idea because it
involves a continually changing coordinate transforma-
tion and a non-equidistant sampling scheme. Pinton and
Labbé20 use the averaged velocity over one revolution in
a swirling flow as the basis for applying TH. This is an

improvement over a long time average, but does not ac-
count for the randomly fluctuating convection velocity
during a single revolution.
In the following, we introduce the true temporal-to-

spatial mapping and discuss statistical quantities evalu-
ated with the new method, in particular first order static
moments and second order dynamic moments, and com-
pare the results to moments computed by time averaging.
In subsequent sections we describe the method applied to
HWA and LDA computer generated data. One of the re-
sults of this analysis is that it is important to consider if
an instrument performs inherently “temporal sampling”
or inherently “spatial sampling”. For example, we shall
show that a digitally sampled HWA performs temporal
sampling, whereas an LDA performs spatial sampling.
The type of sampling has consequences for interpreta-
tion and computation of static and dynamic moments.
We continue by discussing the range of equivalence be-
tween spectra measured by our method and by conven-
tional methods. In Sections III and IV, we illustrate the
validity of the concept by showing that the new method
can restore simulated spatial records while Taylor’s Hy-
pothesis is not able to do so.
In Section VI, we verify experimentally our method

by comparing spatial energy spectra from LDA measure-
ments in the developed jet to corresponding spatial spec-
tra measured along mapped homogeneous directions us-
ing particle image velocimetry (PIV). The agreement be-
tween these spectra even in the outer parts of the jet
is then contrasted to the spatial spectra obtained using
Taylor’s hypothesis. We then apply the method to LDA
measurements in the developing, non-equilibrium part of
a round, turbulent jet in air and compare spatial en-
ergy spectra and spatial 2nd order structure functions
measured in that region to the same quantities measured
further downstream in the fully developed part of the
jet. We discuss the shape of these functions and in-
terpret them as due to incomplete, not fully developed
Richardson-Kolmogorov cascades.

II. THEORY

We consider an experiment in which we measure some
property of the fluid at a fixed point in space, x0, the
measurement point (MP, see Figure 1). The property in
question could typically be a component, ui = ui(x0, t),
say, of the three-dimensional velocity vector u(x0, t)
recorded at x0 as a continuous function of time, t.
i = {1, 2, 3} indicates the three orthogonal coordinate
axes. Essential to the method is, that in addition to the
quantity of interest, we measure the magnitude of the in-
stantaneous velocity vector, u(t) ≡ u(x0, t) = |u(x0, t)|.
How this is done will depend on the actual experi-
ment, whether it is for example a hot-wire anemometer
or a laser Doppler anemometer or perhaps some other
method.
During the infinitesimal time element dt, the fluid ve-
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locity u transports a fluid element dV = dA · ds through
the infinitesimal measurement volume (MV), where dA
is the cross section and ds = u dt is the length of the in-
finitesimal record convected through the measuring vol-
ume. This finite length element ds represents a piece of
a spatial record of the fluid having passed through the
MV with its associated physical properties. By adding
these consecutive convection elements, we form a spatial
record, s, which we have termed the convection record :

s(t) =

∫ t

0

u(x0, t
′) dt′ (2)

Although s is the scalar length of the accumulated con-
vection elements for the fluid passing through the MP,
and although s has the dimension of length, the mea-
surement is still basically a temporal measurement where
we have converted the temporal record to a spatial one
according to Equation (2). We may describe the pro-
cedure as an improved version of TH, where instead of
using the local mean velocity to convert from the tem-
poral to the spatial domain according to the formula
dsTH = |u1(x0, t)|dt, we use the instantaneous velocity
magnitude u(t) = |u(x0, t)|, measured together with the
desired physical property. As explained below, this rep-
resents a mapping from a record indicating the observa-
tion time to a record indicating the volume flow density
through the MP. Note that the only requirement for us-
ing this method to obtain statistical quantities is that the
flow is stationary at the measurement point.

A. Static moments

We can now compute the moments of any measurable
physical quantities, e.g. the velocity component ui ≡
ui(s), recorded as a function of s. Let us take as a generic
example the first moment:

〈ui〉s = lim
L→∞

1

L

∫ L

0

ui(s) ds (3)

where we shall reserve the bracket 〈 〉s for moments using
the spatial record s. L is here the length of a finite spatial

record, L =
∫ T

0 u(x0, t) dt, where T is the length of the

FIG. 1. The instantaneous convection element through the
MV.

corresponding temporal record. The question is how this
spatial mean relates to the temporal mean

ui = lim
T→∞

1

T

∫ T

0

ui(t) dt (4)

Since the mapping from the temporal to the spatial do-
main represented by Equation (2) is a nonlinear one, the
two moments cannot be identical. Recalling that s repre-
sents the length of the accumulated convection elements
or convection record through the infinitesimal MV and
that dAu dt = dAds is a volume element, we conclude
that whereas the moment ui represents the conventional
temporal mean velocity of the component ui(t) at the
MP, the moment 〈ui〉s, represents the average volume
flow density along the i-axis at the MP.

B. Second order dynamic moments

Most measurements with low noise and high dynamic
spectral range are time measurements, predominantly
HWA measurements, and these measurements register
the fluctuations of the time signal as the fluid passes the
stationary probe. However, the temporal energy spec-
trum does not display the correct distribution of the spa-
tial scales in the turbulent flow due to the convection
effect of the large scale velocity fluctuations that tend
to sweep the small scales past the probe with varying
velocity.
TH does not compensate for the mapping effect of the

large velocity fluctuations, and especially at high levels
of turbulence the form of the spatial spectrum may be
quite different from that of the temporal spectrum21. By
applying our method and using the measured velocity
magnitude to perform the time-to-space conversion as
indicated in Equation (2), we obtain a correct represen-
tation of the small scale spatial structures.
We shall consider two forms of the converted one-

dimensional spatial autocovariance function and spatial
energy spectrum according to the quantity we choose to
measure:
A single velocity component, ui(s):

Cui
(r) = 〈ui(s)ui(s+ r)〉 (5)

where the brackets indicate ensemble mean over many
realizations.
Also of interest is the autocovariance function of ve-

locity magnitude, u(s):

Cu(r) = 〈u(s)u(s+ r)〉 (6)

The corresponding spatial energy spectra are given by

Fui
(ki) =

∫ ∞

−∞

e−i2πkirCui
(r) dr (7)

and

Fu(k) =

∫ ∞

−∞

e−i2πkrCu(r) dr (8)
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or by the direct method

Fui
(ki) =

1

L
ũi(ki)ũi(ki)

∗, Fu(k) =
1

L
ũ(k)ũ(k)∗ (9)

where

ũi(ki) =

L∫

0

e−i2πkisui(s) ds (10)

and

ũ(k) =

L∫

0

e−i2πksu(s) ds (11)

are the Fourier transforms performed over a finite length
L of the convection record.

III. TEMPORAL SAMPLING – THE HWA CASE

A. Sampling

Hot-wire anemometers deliver analog time signals that
are usually digitized with regular sampling intervals ∆t =
1/ν where ν is the sampling frequency. The sampled
velocity u0(t) is then

u0(t) =
1

ν

N∑

n=1

δ(t− tn)u(t) (12)

and the individual samples are given by

un = δ(t− tn)u(t) = u(tn) (13)

where N is the number of samples in a record. In prac-
tice, the instantaneous velocity magnitude must be ob-
tained by a separate measurement, either by a 3-D HW
probe or by a separate measurement by an omnidirec-
tional small probe located near the wire measuring the
relevant velocity component.
Estimates for the static moments can then be found by

arithmetic averaging over the record, for example mean
velocity:

û0 =
1

T

∫ T

0

1

ν

N∑

n=1

δ(t− tn)u(t) dt =
1

N

N∑

n=1

un (14)

where the hat indicates that we are dealing with an esti-
mate based on one record.
The temporal second order dynamic moments of course

represent the energy of the velocity signal detected by
the probe. However, due to the “harmonium effect”, the
frequency shift due to the convection of the small spa-
tial scales by the large convecting eddies, the convected
dynamic moments do not represent the spatial velocity
structure or the energy content in the velocity pattern.

The separation in convected and convecting eddies is ac-
tually somewhat artificial; the frequency shift is due to
the total magnitude of the velocity vector, but the most
significant effect is due to the large scales4. To get an
unbiased measurement of the small spatial structures we
need to convert from the temporal record tn to a spatial
one sn:

∆sn = un∆t, sn =

n∑

n′=1

∆sn′ =

n∑

n′=1

un′∆t (15)

In the spatial domain, the very same samples are used
even if their distribution is different along the spatial and
temporal records. Therefore, the temporal mean veloc-
ity in the spatial domain is still given by the arithmetic
average over the measured samples

〈u0〉 =
1

N

N∑

n=1

un (16)

The spatial mean needs to be corrected for sampling bias
in the spatial domain. This could be done by resampling
the spatial record with equal sampling increments.
We can now compute the spatial energy spectra:

F̂ui
(ki) =

1

L
ũi(ki)ũi(ki)

∗, F̂u(k) =
1

L
ũ(k)ũ(k)∗ (17)

where the tilde indicates Fourier transform computed
over the measured samples and the hat indicates an es-
timate based on a single record. However, the samples
are not equidistantly spaced on the spatial record, so
the Fourier transform must be computed by the discrete
Fourier transform, DFT:

ũi(ki) =
N∑

n=1

e−i2πkisnui,n∆sn (18)

and

ũ(k) =

N∑

n=1

e−i2πksnun∆sn (19)

As ũ(k) is the Fourier transform of the velocity vector
magnitude, u, which is always in the direction of the in-
stantaneous velocity vector, the second form of the spec-
tra in Eq. (17) represents the total turbulent kinetic en-
ergy of the small scales.

B. Computer generated HWA spectra

To show that the method produces the desired statis-
tics, we generate the HWA data as follows:
First we generate a large, slowly fluctuating Gaussian

3D velocity, ul(t). Then we simulate a smaller spatially
isotropic velocity with a von Kármán spectrum, us(s).
The von Kármán spectrum is chosen with an exponential
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roll-off that models as closely as possible the jet spectrum
described in the experiment below:

SvK(k) =
1

62.5
·

1

[1 + (k/45)2]
5/6

· exp
[
−(k/2500)4/3

]

(20)
This spatial spectrum is shown as the yellow curve in
the following figures. The mean velocity was 1ms−1 and
the record length was 1 s, which allows us to use the
same scale on the abscissa for both temporal and spatial
spectra.
The total signal is assumed to be homogeneous and

a continuous function of spatial coordinates (which we
achieve with a sufficiently small primary spatial sampling
interval, ∆s). We use the slowly varying signal, which we
assume to be the so-called energy containing, convecting
velocity to transform the spatial record (that of the yel-
low spatial spectrum) to a temporal record measured at
the MP according to the formula

∆tn = ∆s/ul,n (21)

where ul,n is the magnitude of the n’th sample of the
slowly varying (large scale) convection velocity. We then
create a HWA-like signal by resampling the nonlinear
record with a constant sampling interval, ∆trs. The
blue curve in Figure 2 left represents the temporal en-
ergy spectrum based on this temporal record. We then
apply both our new method and TH to convert to spatial
records and obtain the spatial energy spectra as described
above, see Figure 2 right.
The turbulence intensity of the total velocity magni-

tude for these plots was 54%, and it is clearly seen that
the traditional Taylor’s hypothesis is not valid in this
case whereas the new method is able to restore the orig-
inal spatial spectrum.

IV. SPATIAL SAMPLING – THE LDA CASE

A. Sampling

The burst-type LDA is an example of an instrument
performing spatial sampling or sampling in the spatial
domain, because the sampling process is determined by
the (assumed) uniform, albeit random, location of parti-
cles in the fluid. The sampled velocity in space is given
by

u0(s) =
1

ν

N∑

n=1

δ(s− sn)u(s) (22)

and the individual samples by

un = δ(s− sn)u(s) = u(sn) (23)

However, due to the random distribution of particles,
the sampling intervals ∆sn = sn − sn−1 are not equal as
in the case of the HWA. The temporal sampling seen by a

stationary probe, e.g. a laser beam, will now be random
with a mean rate of arrival proportional to the volume
flow, assuming a constant MV cross section. Thus, in the
LDA-case, both static and dynamic moments need to be
corrected for velocity bias by residence time weighting in
order to obtain correct time averages22–24.
To get the spatial spectrum, we map from the mea-

sured time record to the spatial domain by the formula

∆sn = un∆tn, sn =

n∑

n′=1

un′∆tn′ (24)

where un is the sampled velocity magnitude. As the
LDA measures components of the velocity, determination
of the velocity magnitude requires a 3-D velocity mea-

surement: un =
√
u2
i + u2

j + u2
k. However, most mod-

ern LDA systems measure the so-called residence time or
transit time for a particle traversing the MV. Knowing
the diameter of the MV, dMV , we can estimate un as

un = dMV /∆trn (25)

where ∆trn is the measured residence time. Due to the
random path of particles through the measuring volume,
the residence time will fluctuate around a mean value.
Thus un will be a strongly fluctuating quantity. How-
ever, as we compute the spectrum as an average (block
average) over many spectral estimates, and since the par-
ticle path and the velocity are uncorrelated, the effect of
the residence time fluctuations will be reduced. As we
have shown previously in25, the noise due to the random
sampling is the dominant noise source, and the residence
time fluctuations can be neglected. This is also confirmed
by the convergence of the block averaged spectra shown
below.
The time sampling intervals, ∆tn, are now different

(random) and not known a priori. However, when the
sampling rate is high enough, we can replace the con-
vection element by the time between samples multiplied
by the latest measured velocity (or by some higher order
interpolation scheme):

∆sn = un(tn − tn−1), sn =

n∑

n′=1

un′(tn′ − tn′−1). (26)

The spatial energy spectra can now be computed:

F̂ui
(ki) =

1

L
ũi(ki)ũi(ki)

∗ (27)

and

F̂u(k) =
1

L
ũ(k)ũ(k)∗ (28)

with

ũi(ki) =

N∑

n=1

e−i2πkisnui,n∆sn (29)
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FIG. 2. Computer generated HWA spectra. Block average of 100 records. Yellow: VK-based model. Blue: temporal spectra.
Red: spatial spectra. LHS: Temporal spectrum of resampled time record. RHS: Spatial spectrum by the new method (dark
red) and converted by Taylor’s method (light red). Color online.

and

ũ(k) =

N∑

n=1

e−i2πksnun∆sn (30)

Again, as un is the magnitude of the instantaneous
velocity vector, Eqn. (28) represents the total kinetic en-
ergy spectrum.

B. Computer generated LDA spectra

The computer generated data are described in Buch-
have et al.26 and Velte et al.27. Briefly, the random spa-
tial samples were grabbed from a high data rate primary
velocity record with the von Kármán temporal energy
spectrum Eq. (20) by a Poisson process. Since we are
sampling the velocity in space and assuming the particles
to be uniformly distributed in space, the Poisson process
is not modulated by velocity, and there is no velocity –
sample rate bias.

We now assume that the velocity fluctuations are con-
vected through the LDA MV by 3-D Gaussian large scale
eddies. The mean velocity was 1ms−1 and the record
length was 1 s. The turbulence intensity for the com-
plete fluctuating convection velocity signal was 54%. The
spectra were averaged over 100 records.

The resulting randomly sampled time record results in
an aliased time spectrum (dark blue) as shown in Figure 3
LHS. The RHS shows that the new method restores the
von Kármán spectrum even in the presence of large scale
low frequency 3-D fluctuations whereas Taylor’s hypoth-
esis in this case with a 54% turbulence intensity does not
adequately restore the spatial record.

V. RELATION TO CLASSICAL SPECTRA

In classical turbulence theory28, the starting point is a
homogeneous, random velocity field observed at an arbi-
trary point in time. The 3-D covariance tensor is defined
as

Ri,j(r) = 〈ui(x)uj(x+ r)〉 (31)

where x is an arbitrary point (which could be the MP
described above) and r is the three-dimensional displace-
ment. The brackets indicate ensemble averaging over ve-
locity field realizations. We notice here that the displace-
ment r is the linear distance from the MP in the frozen
flow field. The corresponding energy density tensor is
given by

Fi,j(k) = FT {Ri,j(r)} , (32)

where k is the three-dimensional wave vector. As these
three-dimensional quantities are hard to handle experi-
mentally, the common practice is to define the i’th com-
ponent of the one-dimensional spectra in a principal co-
ordinate system,

Fi,i(k) = FT {Ri,i(r)} . (33)

However, as is well known, these one-dimensional spectra
are aliased in the sense that spectral components at an
angle to the axes appear at lower spectral values29.
Of crucial importance to turbulence modelling is the

so-called total turbulent kinetic energy spectrum, where
all spectral components of a given wave vector magnitude
are summed to provide the kinetic energy spectrum:

E(k) =
1

2

∑

i

∫

k=|k|

Fi,i(k) dk. (34)

The question here is how our new spectra relate to these
classical ones.



7

FIG. 3. Spectra of the von Kármán turbulence convected past the LDA MV by a large low frequency Gaussian fluctuation.
Left: Blue: The temporal spectrum. Right: Yellow: The original von Kármán model spectrum. Dark red: The spatial spectrum
restored. Light red: The spatial spectrum restored by the conventional Taylor’s hypothesis. Color online.

The classical spectra only have statistical meaning for
a homogeneous velocity field measured at a given point
in time. The results are found as ensemble averages over
(infinitely) many realizations. We shall relax the condi-
tion of homogeneity of the velocity field to consider also
fields with a non-isotropic angular velocity distribution
in a spherical coordinate system, Pu(φ, θ) (to include for
example a field with a stationary local mean velocity),
but still require homogeneity in the sense that Pu(φ, θ)
is the same throughout space along any homogeneous di-
rection. We can then write the averaging process for the
covariance as

Ri,j(r) = 〈ui(x)uj(x + r)〉

=

〈∫
Pu(φ, θ)ui(x, φ, θ) dφ dθ

·

∫
Pu(φ

′, θ′)uj(x+ r, φ′, θ′) dφ′ dθ′
〉

r

(35)

where (r, φ, θ) are spherical coordinates, the bracket 〈 〉r
indicates ensemble average over realizations using the
same scalar distance r, and Pu(φ, θ) and Pu(φ

′, θ′) are
identical because of homogeneity but with independently
fluctuating direction angles.
Ri,j(r) is now a one-dimensional statistical quantity,

which is only a function of the distance r from the mea-
surement point. The total turbulent kinetic energy spec-
trum is

E(k) =
1

2

∑

i

∫
e−i2πkrRi,i(r) dr. (36)

We shall now compare this to the new method with ref-
erence to Figure 4 below.
In the new situation, all measurements refer to the

measurement point, MP, and the temporal record is con-
verted to a spatial record consisting of a sum of convec-
tion elements. Since each convection element and the
corresponding velocity vector are always co-parallel, we

FIG. 4. Illustrating covariance measurements.

can write the one-dimensional covariance as a function of
the spatial record, s:

R(s) = 〈u(s0)u(s0 + s)〉

=

〈∫
Pu(φ, θ)u(s0, φ, θ) dφ dθ

·

∫
Pu(φ

′, θ′)u(s0 + s, φ′, θ′) dφ′ dθ′
〉

s

(37)

and the total turbulent kinetic energy spectrum as

E(k) =
1

2

∫
e−i2πksR(s) ds. (38)

Note: This is a single term, one-dimensional expression,
but since there are no velocity components normal to the
convection, it includes the total turbulent kinetic energy.
There is no need to add three terms. If we now compare
the two paths in Figure 4, we can see that a certain dis-
tance s along the convection record will not correspond
to an equivalent distance r, unless the convection record
can be considered approximately a straight line. In other
words, the radius of curvature of the streak line should
be large compared to the distance s.
Due to the discrepancy in path length between the

accumulated arc length s (eqn. 1) and the distance r, ac-
curate direct comparison between the classical and new
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spectra can only be achieved within a limited spatial do-
main around the measurement point. The extent of this
region may be formulated in terms of the radius of cur-
vature, R, or the equivalent line curvature κ = 1/R. A
measure classically associated with the spatial velocity
curvature, or the gradients in the flow, is the Taylor mi-
croscale, λ. A relation between κ and λ, based on scaling
arguments, was deduced by Schäfer30,31:

〈
κ2

〉
∝ λ−2 (39)

or, in terms of radius of curvature:

R/λ = constant ∼ 1. (40)

The region within which the arc curvature can be con-
sidered negligible is therefore of the order of the Taylor
microscale. As the Taylor microscale is an average ob-
tained from flow statistics, so are the resulting curvature
κ and curvature radius R. Schäfer30,31 tested these re-
sults using DNS simulations of four different flows with
different Reynolds numbers, displaying excellent agree-
ment independent of Reynolds number within a range
Reλ = 50 ↔ 300.
One may therefore argue that, if one can assume local

homogeneity and stationarity within this vicinity of the
measuring point, there exists a direct correspondence be-
tween the classical and the here proposed energy spectra
for the wavenumber range within the spatial extent of
this region.

VI. LDA MEASUREMENTS IN A FREE JET IN AIR

We now apply our method to the measurement of a tur-
bulent round jet in air. The free round turbulent jet is a
canonical flow that, apart from the influence of the inlet,
develops freely, unhampered by surrounding constraints
such as walls. It is therefore an ideal experiment for the
study of developing turbulence, both in the region near
the jet exit, where the turbulence generation is most ac-
tive, and in the region further downstream, where the jet
is fully developed. We have made measurements of the
streamwise velocity component in radial scans from the
jet center to points outside the jet interface to the sur-
rounding air at distances from the jet exit of 10D, 15D
and 30D, where D is the jet orifice diameter. The mea-
surements were made with a side scattering laser Doppler
anemometer (LDA) specially designed to obtain high res-
olution spectral information in a highly turbulent flow.
The signal from the photodetector is digitized and saved,
and all signal processing is performed in software.
The LDA with optical frequency shift and a spheri-

cal measurement volume is the only instrument that can
make unbiased velocity measurement in the highly turbu-
lent flow encountered between 10D and 15D, especially
in the shear layers and the outer region of the jet, and
our method of converting time records into convection
records allows us to study the convection of small spatial

scales past the MP even if the flow is highly inhomoge-
neous (but stationary, allowing us to make sensible sta-
tistical calculations of e.g. energy spectra and structure
functions).

The experiment is described in detail in Velte et al.24.
The jet data for present measurements were: Jet exit
diameter: D = 10mm, measurement location: 10, 15
and 30 diameters downstream at five points off axis (cor-
responding to 0, 0.5, 1.0, 1.5 and 2.0 jet half-widths,
respectively). The jet exit velocity was 30ms−1, the
measurement volume was 100µm in diameter and the
average data rate was approx. 6400 s−1 on the center
line at downstream distance 30D from the nozzle exit.
The scales are estimated as: Kolmogorov scale = 53µm,
Taylor scale = 2.2mm at the center line at 30D down-
stream location. 4.000.000 data points were used at each
location.

We first show results at 30D, where the jet is assumed
to be fully developed and the turbulence is in equilib-
rium. As a baseline, spatial (non-dimensional) spectra
measured by particle image velocimetry (PIV)32 along
homogeneous streamwise directions in a mapped similar-
ity space33 are shown in Figure 5 LHS. The spectra are
shown to collapse when normalized by the local veloc-
ity variance, indicating that the spatial energy spectrum
does indeed display the same energy distribution across
scales, regardless of radial position in the jet. The tem-
poral spectra measured by LDA are therefore normalized
accordingly, see Figure 5 RHS, resulting in normalized
values at low frequencies which facilitates comparison
of the shape of the spectra. As expected, the tempo-
ral energy spectra are shifted towards higher frequencies
as the mean velocity increases. For completion, Figures 6
displays the corresponding (LEFT) mean velocity, RMS
velocity, turbulence intensity and (RIGHT) the tempo-
ral Taylor microscale and integral time scale measured
with LDA for all radial positions measured. The Tay-
lor microscale was extracted by taking the average time
between zero crossings in the fluctuating velocity compo-
nent time history. The integral time scale was extracted
from the temporal energy spectrum extrapolated to zero
frequency where the spectrum base level was adjusted
from the dominating random noise level to a level where
the integral under the one-sided spectrum matched half
of the velocity variance, according to definition.

After application of our conversion method, we find
the spatial spectra shown in LHS of Figure 7. The RHS
shows spatial energy spectra based on Taylor’s method.
The spectra based on the new method collapse to nearly
overlapping curves whereas Taylor’s method deviates a
little for the 26mm off-axis position and fails badly for
the 39 and 52mm off-axis positions. The turbulence in-
tensity at these positions are 23%, 65% and 420%, re-
spectively. It is interesting to note that the collapse of
the spatial spectra extend to low frequencies suggesting

that the convection record may be valid also for scales
larger than the Taylor microscale.

We now proceed to the non-equilibrium part of the jet
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at 15D and at 10D. Measurements in highly turbulent,
non-equilibrium flows are difficult and prone to errors
due to the fluctuating magnitude and direction of the in-
stantaneous velocity. A series of measurement of velocity
spatial energy spectra in non-equilibrium flows in wind
tunnels behind regular and fractal grids are reported in34.
The spectra are examined with respect to the reference
Kolmogorov spectrum and compared to an inertial sub-
range with a −5/3 slope. It was found, that even close
to a fractal grid, a −5/3 slope could be detected over a
wavenumber decade. As we show below, we find that the
−5/3 slope we see at 30D is reduced to just a tangential
approximation to a −5/3 slope at 15D and 10D. We be-
lieve that the −5/3 slope is to be expected in any flow
with a uniform distribution of spatial scales as presumed
in Kolmogorov’s derivation.
Figure 8 displays the temporal and spatial energy spec-

tra measured at 15D and Figure 9 displays the spectra
at 10D. By inspection of these plots we may conclude
the following.

• The temporal energy spectra are shifted to higher fre-
quencies where the mean velocity is greater, as ex-
pected. However, unlike the situation at 30D, the spa-
tial energy spectra do not collapse to a single curve
indicating that the turbulence is not in equilibrium.

• The slope of the high frequency / high wavenumber
plots does not follow the −5/3 slope over any range,
but do show a tangential approximation to the −5/3
slope. The match to the −5/3 slope is worst in the
outer parts of the jet and at x = 10D.

• The deviation from the Kolmogorov spectrum appears
to occur at the high frequency end of the spectrum,
where the curves drop below the −5/3 slope. We
hypothesize that the reason is that the Richarson-
Kolmogorow cascade of large scales to small scales
through triade interactions as described in e.g.35 has
not had sufficient time to develop fully. Thus, the mea-
surements give a rough indication of the dynamics of
the cascade. The average convection velocity of the
large eddies between the exit and the 10D position
is approximately 5ms−1. Thus, a convection time of
x/Uconv = 0.01m/ 5m/s = 0.01/5 s = 20ms appears
to be insufficient for the cascade to convert the large
scales to the smallest scales that we can measure with
our setup.

• Finally, the different shapes of the curves near the axis
and far from the axis seems to indicate that the turbu-
lence is closer to the Kolmogorov shape near the axis
than at the outer part of the jet.

Figure 10 shows the measured data displayed as the
2nd order spatial structure function at the locations 15D
and 10D. We see again symptoms of non-equilibrium
as differences in the curves at different radial positions.
By inspection of the plots, we can see that there are

relatively more large scale structures as we move down-
stream. We also notice that there is relatively more small
scale activity near the center line than in the outer parts
of the jet.

VII. CONCLUSION

Our spatial record is not equivalent to a conventional
streamline or streak line. It consists of the time-sampled
velocities, but the temporal record is mapped into a spa-
tial one-dimensional record consisting of a sum of consec-
utive convection elements. We can interpret this record
as describing the transport or convection of fluid parcels
through the MV. With the fluid parcels follow fluid prop-
erties such as velocity structure, temperature, particle
concentration etc.
It is intuitively clear that the scrambling of frequen-

cies that occurs in the temporal energy spectrum be-
cause of the transport of small structures by the large
instantaneous 3D velocity will be un-scrambled by the
new method, at least as concerns the small, isotropic
high wavenumber velocity structures. The spatial en-
ergy spectrum then expresses the energy of the spatial
structures of the velocity passing the MV.
We show that spatial correlation functions and spa-

tial energy spectra computed from the convection record
are equivalent to the classical quantities within a spa-
tial range defined by the Taylor microscale. Beyond
this range, the statistics may still be useful though they
are not necessarily directly comparable to their classi-
cal counterparts in a general flow setting. As can be
observed in Figures 5 LHS and 7 LHS, comparing the

spatial PIV spectra to the spatial LDA spectra, they do
indeed produce directly comparable statistics across the

complete spectrum of scales measured – even well beyond
the Taylor microscale.

Our method completely bypasses the traditional Tay-
lor’s Hypothesis, but at the cost of an additional mea-
surement of the magnitude of the instantaneous total
3D velocity vector. The method may be applied to all
time sampling measurements (or flow simulations) ob-
tained at a fixed point in (locally) stationary flow, but,
in high intensity turbulent flow such as atmospheric and
oceanographic flows, only the LDA (or maybe a 3D sonic
anemometer) is able to provide reliable and unbiased high
resolution velocity measurements.
It is important to note that this proposed convection

record mapping is general and thus applicable indepen-
dently of flow setting. Although the implementation is
most straightforwardly and most accurately measured
with correctly functioning laser Doppler anemometers,
it can indeed be implemented also on any set of regularly
sampled data including computer simulations. The anal-
ysis is based on a continuous signal, so the discretized
signal must reflect the same behavior by being sampled
with a high enough sampling rate to resolve the small-
est scales in the signal. If the smallest temporal/spatial
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FIG. 8. LEFT: Temporal energy spectra at 0, 0.5, 1.0, 1.5 and 2.0 jet half-widths at x = 15D. RIGHT: Spatial energy spectra
computed from the convection record at the same locations. Color online.

FIG. 9. LEFT: Temporal energy spectra at 0, 0.5, 1.0, 1.5 and 2.0 jet half-widths at x = 10D. RIGHT: Spatial energy spectra
computed from the convection record at the same locations. Color online.

FIG. 10. From left to right: 2nd order spatial structure functions at 15D and 10D and radial positions at 0, 0.5, 1.0, 1.5 and
2.0 jet half-widths. Color online.



12

scales of the analog measured signal cannot be resolved,
the signal must be anti-aliasing filtered prior to sam-
pling to avoid these effects according to standard the-
ory36. The relevant parameter in LDA measurements is
the mean sample rate of the randomly arriving temporal
samples. To avoid averaging effects in the determination
of the spatial sampling increment (Eq. 26), the average
(and stationary) sample rate should be greater than the
Nyquist rate.
We applied the method to measurements in a round,

turbulent jet in air with radial scans at different down-
stream distances from the jet exit, both in the fully de-
veloped jet at 30D, where the turbulence is assumed to
be in equilibrium, and in the strongly non-equilibrium
parts of the jet at 15D and 10D. In the fully developed
part of the jet, the spatial spectra measured with LDA
using our method show perfect agreement with spatial
spectra derived from PIV measurements obtained in the
same jet. Our spatial energy spectra and spatial 2nd or-
der structure functions obtained in the non-equilibrium
par of the jet reveal interesting features of the develop-
ing turbulence that can be interpreted as resulting from
an incomplete Richardson – Kolmogorov cascade process
where the triadic interactions between large scales and
small sales have not had time to reach equilibrium.

ACKNOWLEDGMENTS

We wish to acknowledge the generous support of Fab-
riksejer, Civilingeniør Louis Dreyer Myhrwold og hustru
Janne Myhrwolds Fond (grant journal no. 13-M7-0039
and 15-M7-0031) and Reinholdt W. Jorck og Hustrus
Fond (grant journal no. 13-J9-0026). The authors also
wish to thank Professor Emeritus Poul Scheel Larsen for
many helpful discussions.

1G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. Lon-
don, Ser. A 164, 476 (1938).

2C. C. Lin, “On taylor’s hypothesis and the acceleration terms
in the navier-stokes equations,” J. Appl. Mathematics 10, 295
(1953).

3M. J. Fisher and P. O. A. L. Davies, “Correlation measurements
in a nonfrozen pattern of turbulence,” J. Fluid Mech. 18, 97–116
(1964).

4J. L. Lumley, “Interpretation of time spectra measured in high-
intensity shear flows,” Phys. Fluids 8, 1056 (1965).

5J. C. Wyngaard and S. F. Clifford, “Taylor’s hypothesis and high
frequency turbulence spectra,” J. Atm. Sciences 34, 922 (1977).

6A. S. Gurvich, “Influence of the temporal evolution of turbulent
inhomogeneities on frequency spectra,” Atmos. Ocean. Phys. 16,
231–237 (1980).

7R. A. Antonia, N. Phan-Thien, and A. J. Chambers, “Taylor’s
hypothesis and the probability density functions of temporal ve-
locity and temperature derivatives in a turbulent flow,” J. Fluid
Mech. 100, 193 (1980).

8J. W. Deardorff and G. E. Willis, “Investigation of the frozen-
turbulence hypothesis for temperature spectra in a convectively
mixed layer,” Phys. Fluids 25, 21–28 (1982).

9J. C. Kaimal, R. A. Eversole, D. H. Lenschow, B. B. Stankov,
P. Kahn, and J. A. Businger, “Spectral characteristics of the
convective boundary layer over uneven terrain,” J. Atmos. Sci.
39, 1098–1114 (1982).

10G. Heskestad, “A generalized taylor hypothesis with application
for high reynolds number turbulent shear flows,” J. App. Math-
ematics 32, 735 (1965).

11The temporal energy spectrum is often in the turbulence com-
munity refereed to as the power spectrum (of the velocity fluctu-
ations) by convention from electrical engineering.

12H. Tennekes, “Eulerian and lagrangian time microscales in
isotropic turbulence,” J. Fluid Mech. 67, 561 (1975).

13W. C. Thacker, A Transformation Relating Temporal and Spatial

Spectra of Turbulent Kinetic Energy (Boulder, Colo. : Dept. of
Commerce, National Oceanic and Atmospheric Administration,
Environmental Research Laboratories, Atlantic Oceanographic
and Meteorological Laboratories, Miami, Florida, 1977).

14F. H. Champagne, “The fine-scale structure of the turbulent ve-
locity field,” J. Fluid Mech. 78, 67 (1978).

15K. B. M. Q. Zaman and A. K. M. F. Hussain, “Taylor’s hypothe-
sis and large-scale coherent structures,” J. Fluid Mech. 112, 379
(1981).

16J. Mi and R. A. Antonia, “Corrections to taylor’s hypothesis in
a turbulent circular jet,” Phys. Fluids 6, 1548 (1994).

17E. Gledzer, “On the taylor hypothesis corrections for measured
energy spectra of turbulence,” Physica D 104, 163 (1997).

18M.Wilczek, H. Xu, and Y. Narita, “A note on taylor’s hypothesis
under large-scale ow variation,” Nonlin. Processes Geophys. 21,
645 (2014).

19R. J. Hill, “Corrections to taylor’s frozen turbulence approxima-
tion,” Atm. Res. 40, 153 (1996).
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