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The CNO cycle is the main process for hydrogen burning in stars somewhat more massive than
the Sun. The reaction cross sections at Gamow energies are typically in the femto to pico-barn
range and are consequently very difficult to measure experimentally. The CNO reaction rates
are based on extrapolations of experimental data from higher energies. We are developing a
multi-channel R-matrix code (AZURE) to provide a new and more comprehensive tool for fitting
experimental data and making extrapolations to lower energies in all reaction and scattering
channels.

The 14N(p,γ)15O reaction is the slowest reaction of the CNO cycle and thus itdetermines the

energy production rate of CNO burning. Furthermore, this reaction plays an important role in

the determination of Globular Cluster age, since the position of the turnoff point, at which the

GC stars escape from the Main Sequence, is powered by the onset of the CNO burning, whose

bottleneck is the14N(p,γ)15O. We have made a reanalysis of the most recent experimental data on

the ground state and the 6.18 MeV transitions. The ratio of the cross sections of the15N(p,γ)16O

and15N(p,α)12C reactions determines how much catalytic material passes to higher CNO cycles

and has an effect on the production of heavier elements, particularly 16O and17O. Simultaneous

analysis of both reactions for all channels suggests that the ratioσγ /σα is smaller than previously

reported.
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Figure 1: Sample fits for the ground state and 6.18 MeV state radiative capture transitions. The astro-
physical S-factor in the ground state transition is determined by the interference between the subthreshold
state, the 2.187 MeV 3/2+ state and the contribution from the 3/2+ background pole used to simulate direct
capture. For the transition to the 6.18 MeV state, the low energy S-factor is principally determined by the
interference between the 0.259 MeV 1/2+ resonance and the 1/2+ background pole.

1. 14N(p,γ)15O and 14N(p,p)14N reactions

The14N(p,γ)15O reaction is the slowest reaction in the first CNO cycle and as such determines
the overall rate of energy production. It has been measured over a wide range of energies (see Ref.
[1]), with more recent measurements focusing on the low energy region (Refs. [2, 3, 4]).

The radiative capture transitions to the ground and 6.18 MeV states were simultaneously anal-
ysed using the AZURE multichannel R-matrix code (see Ref. [5]). For the ground state transition,
a 1/2+ resonance was included atECM=0.259 MeV and 3/2+ resonances at -0.504, 0.985 and 2.187
MeV. Background poles were included at 10 MeV for Jπ=1/2+ and 3/2+. Contributions from all
allowed spins and angular momenta were considered and all reduced-widthamplitudes were free
to vary. Sample fits can be seen in Fig. 1.

These preliminary results are in good agreement with those published by the LUNA collabora-
tion (Ref. [2, 4]). Further developments of the AZURE code to include direct capture contributions
will allow improved analysis of theγ-ray transitions presented here, as well as the transition to
the weakly bound 6.79 MeV state which has the largest contribution to the astrophysical S-factor.
Total (p,γ) cross section measurements will also be included in this analysis.

It had been suggested that an analysis of the14N(p,p)14N reaction might further constrain
the radiative capture channels. An initial analysis of this reaction was made independently of the
radiative capture channels, using the data of Ref. [6]. Sample fits for twoof the eleven angles
available are shown in Fig. 2.

This preliminary elastic scattering analysis has indicated that additional constraint may be
placed on the ground state transition. In particular, the reduced-width amplitudes of the broad 3/2+

state at 2.187 MeV should be constrained, helping distinguish thel = 0 andl = 2 contributions. It
is this state that, along with the subthreshold state and direct capture components, determines the
low energy S-factor in the ground state transition. As the ground state is the least well determined
transition, further analysis could prove fruitful. There may also be some constraint placed on the
contribution from the subthreshold state.
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Figure 2: Sample of elastic scattering fits forθ=70◦ andθ=153◦.
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Figure 3: Total χ2 as a function of S(0) inα0- andγ0-channels. Contours are placed at 5% intervals inχ2,
with the error arbitrarily taken at+5% in the totalχ2.

2. 15N(p,γ)16O and 15N(p,α)12C reactions

The 15N(p,γ)16O and15N(p,α)12C reactions are the branching point between the first and
second CNO cycles. The data from Refs. [7, 8, 9, 10, 11] was reanalysed using a multichannel
R-matrix approach. In both theα0- andγ0-channels the low energy S-factor is determined by the
interference between the 1− resonances at 0.312 and 0.96 MeV. Also included were the 1+ and 3−

resonances at 1.53 and 1.13 MeV respectively, and 1− and 3− background poles at 10 MeV. All
allowed spin and angular momentum channels were considered and all reduced-width amplitudes
were free to vary.

Error estimates for the astrophysical S-factors were made by fixing the lowenergy S-factor,
fitting and recording the fittedχ2. The minimumχ2 gives the physical S(0) and the rate of deviation
from the minimum gives an estimate of the error (see Fig. 3). The resulting astrophysical S-factor
estimates are Sγ0(0)=50+7

−6 keV.b and Sα0(0)=68.0+5.5
−2.5 MeV.b. Theα0-channel result is in good

agreement with previous estimates, but theγ0-channel result is lower than previous estimates of
64±6 keV.b (see Ref. [9]). This may be in part due to the background pole used to simulate direct
capture. Improvements to the AZURE code to incorporate direct capture are being made and once
complete, the result will be checked.
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