5 research outputs found

    Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments

    Get PDF
    Addition of manganese(IV) oxides (MnO2) and zeolite can affect the mobility of As and V in soils due to geochemical changes that have not been studied well in calcareous, flooded soils. This study evaluated the mobility of As and V in flooded soils surface-amended with MnO2 or zeolite. A simulated summer flooding study was conducted for 8 weeks using intact soil columns from four calcareous soils. Redox potential was measured in soils, whereas pH, major cations, and As and V concentrations were measured biweekly in pore water and floodwater. Aqueous As and V species were modeled at 0, 4, and 8 weeks after flooding (WAF) using Visual MINTEQ modeling software with input parameters of redox potential, temperature, pH, total alkalinity, and concentrations of major cations and anions. Aqueous As concentrations were below the critical thresholds (<100 ÎŒg L−1), whereas aqueous V concentrations exceeded the threshold for sensitive aquatic species (2–80 ÎŒg L−1). MnO2-amended soils were reduced to sub-oxic levels, whereas zeolite-amended and unamended soils were reduced to anoxic levels by 8 WAF. MnO2 decreased As and V mobilities, whereas zeolite had no effect on As but increased V mobility, compared to unamended soils. Arsenic mobility increased under anoxic conditions, and V mobility increased under oxic and alkaline pH conditions. Conversion of As(V) to As(III) and V(V) to V(IV) was regulated by MnO2 in flooded soils. MnO2 can be used as an amendment in immobilizing As and V, whereas the use of zeolite in flooded calcareous soils should be done cautiously."This research was financially supported by Environment and Climate Change Canada through Lake Winnipeg Basin Program, University of Winnipeg Major Grant and Canadian Queen Elizabeth II Diamond Jubilee Scholarships: Advanced Scholars program."https://acsess.onlinelibrary.wiley.com/doi/10.1002/jeq2.2045

    Field evaluations on soil plant transfer of lead from an urban garden soil

    Get PDF
    Citaion: Attanayake, Chammi P., et al. “Field Evaluations on Soil Plant Transfer of Lead from an Urban Garden Soil.” Journal of Environmental Quality, vol. 43, no. 2, 2014, pp. 475–87. Wiley Online Library, doi:10.2134/jeq2013.07.0273.Lead (Pb) is one of the most common contaminants in urban soils. Gardening in contaminated soils can result in Pb transfer from soil to humans through vegetable consumption and unintentional direct soil ingestion. A field experiment was conducted in 2009 and 2010 in a community urban garden with soil total Pb concentration of 60 to 300 mg kgˉÂč. The objectives of this study were to evaluate soil-plant transfer of Pb, the effects of incorporation of a leaf compost as a means of reducing Pb concentrations in vegetables and the bioaccessibility of soil Pb, and the effects of vegetable cleaning techniques on the Pb concentrations in the edible portions of vegetables. The amount of compost added was 28 kg mˉÂČ. The tested plants were Swiss chard, tomato, sweet potato, and carrots. The vegetable cleaning techniques were kitchen cleaning, laboratory cleaning, and peeling. Compost addition diluted soil total Pb concentration by 29–52%. Lead concentrations of the edible portions of vegetables, except carrot, were below the maximum allowable limits of Pb established by FAO and WHO. Swiss chard and tomatoes subjected to kitchen cleaning had higher Pb concentrations than laboratory-cleaned plants. Cleaning methods did not affect Pb concentrations in carrots. Bioaccessible Pb in the compost-added soils was 20–30% less than that of the no-compost soils; compost addition reduced the potential of transferring soil Pb to humans via vegetable consumption and direct soil ingestion. Thorough cleaning of vegetables further reduced the potential of transferring soil Pb to humans

    Sustainable management of plastic wastes in COVID-19 pandemic: the biochar solution

    No full text
    To prevent the COVID-19 transmission, personal protective equipment (PPE) and packaging materials have been extensively used but often managed inappropriately, generating huge amount of plastic waste. In this review, we comprehensively discussed the plastic products utilized and the types and amounts of plastic waste generated since the outbreak of COVID-19, and reviewed the potential treatments for these plastic wastes. Upcycling of plastic waste into biochar was addressed from the perspectives of both environmental protection and practical applications, which can be verified as promising materials for environmental protections and energy storages. Moreover, novel upcycling of plastic waste into biochar is beneficial to mitigate the ubiquitous plastic pollution, avoiding harmful impacts on human and ecosystem through direct and indirect micro-/nano-plastic transmission routes, and achieving the sustainable plastic waste management for value-added products, simultaneously. This suggests that the plastic waste could be treated as a valuable resource in an advanced and green manner

    Sub-micron level investigation reveals the inaccessibility of stabilized carbon in soil microaggregates

    Get PDF
    Abstract Direct evidence-based approaches are vital to evaluating newly proposed theories on the persistence of soil organic carbon and establishing the contributions of abiotic and biotic controls. Our primary goal was to directly identify the mechanisms of organic carbon stabilization in native-state, free soil microaggregates without disrupting the aggregate microstructure using scanning transmission x-ray microscopy coupled with near edge x-ray absorption fine structure spectroscopy (STXM-NEXAFS). The influence of soil management practices on microaggregate associated-carbon was also assessed. Free, stable soil microaggregates were collected from a tropical agro-ecosystem in Cruz Alta, Brazil. The long-term experimental plots (>25 years) comparing two tillage systems: no-till and till with a complex crop rotation. Based on simultaneously collected multi-elemental associations and speciation, STXM-NEXAFS successfully provided submicron level information on organo-mineral associations. Simple organic carbon sources were found preserved within microaggregates; some still possessing original morphology, suggesting that their stabilization was not entirely governed by the substrate chemistry. Bulk analysis showed higher and younger organic carbon in microaggregates from no-till systems than tilled systems. These results provide direct submicron level evidence that the surrounding environment is involved in stabilizing organic carbon, thus favoring newly proposed concepts on the persistence of soil organic carbon
    corecore