540 research outputs found

    Studies of the Suitability of Fowlpox as a Decontamination and Thermal Stability Simulant for Variola Major

    Get PDF
    Variola major, the causative agent of smallpox, has been eradicated from nature. However, stocks still exist; thus, there is a need for relevant decontamination studies, preferably with nonpathogenic simulants. Previous studies have shown a similarity in response of vaccinia virus and variola major to various decontaminants and thermal inactivation. This study compared vaccinia and fowlpox viruses under similar conditions, using disinfectants and temperatures for which variola major data already existed. Most disinfectants showed similar efficacy against vaccinia and fowlpox, suggesting the utility of fowlpox as a decontamination simulant. Inactivation kinetics studies showed that fowlpox behaved similarly to variola major when treated with 0.1% iodine and 5.7% polyethyleneglycol nonylphenyl ether, 0.025% sodium hypochlorite, 0.05% sodium hypochlorite, and 0.1% cetyltrimethylammonium chloride and 0.05% benzalkonium chloride, but differed in its response to 0.05% iodine and 0.3% polyethyleneglycol nonylphenyl ether and 40% ethanol. Thermal inactivation studies demonstrated that fowlpox is a suitable thermal simulant for variola major between 40°C and 55°C

    Creating User-Friendly Tools for Data Analysis and Visualization in K-12 Classrooms: A Fortran Dinosaur Meets Generation Y

    Get PDF
    During the summer of 2007, as part of the second year of a NASA-funded project in partnership with Christopher Newport University called SPHERE (Students as Professionals Helping Educators Research the Earth), a group of undergraduate students spent 8 weeks in a research internship at or near NASA Langley Research Center. Three students from this group formed the Clouds group along with a NASA mentor (Chambers), and the brief addition of a local high school student fulfilling a mentorship requirement. The Clouds group was given the task of exploring and analyzing ground-based cloud observations obtained by K-12 students as part of the Students' Cloud Observations On-Line (S'COOL) Project, and the corresponding satellite data. This project began in 1997. The primary analysis tools developed for it were in FORTRAN, a computer language none of the students were familiar with. While they persevered through computer challenges and picky syntax, it eventually became obvious that this was not the most fruitful approach for a project aimed at motivating K-12 students to do their own data analysis. Thus, about halfway through the summer the group shifted its focus to more modern data analysis and visualization tools, namely spreadsheets and Google(tm) Earth. The result of their efforts, so far, is two different Excel spreadsheets and a Google(tm) Earth file. The spreadsheets are set up to allow participating classrooms to paste in a particular dataset of interest, using the standard S'COOL format, and easily perform a variety of analyses and comparisons of the ground cloud observation reports and their correspondence with the satellite data. This includes summarizing cloud occurrence and cloud cover statistics, and comparing cloud cover measurements from the two points of view. A visual classification tool is also provided to compare the cloud levels reported from the two viewpoints. This provides a statistical counterpart to the existing S'COOL data visualization tool, which is used for individual ground-to-satellite correspondences. The Google(tm) Earth file contains a set of placemarks and ground overlays to show participating students the area around their school that the satellite is measuring. This approach will be automated and made interactive by the S'COOL database expert and will also be used to help refine the latitude/longitude location of the participating schools. Once complete, these new data analysis tools will be posted on the S'COOL website for use by the project participants in schools around the US and the world

    Augmenting Immersive Telepresence Experience with a Virtual Body

    Full text link
    We propose augmenting immersive telepresence by adding a virtual body, representing the user's own arm motions, as realized through a head-mounted display and a 360-degree camera. Previous research has shown the effectiveness of having a virtual body in simulated environments; however, research on whether seeing one's own virtual arms increases presence or preference for the user in an immersive telepresence setup is limited. We conducted a study where a host introduced a research lab while participants wore a head-mounted display which allowed them to be telepresent at the host's physical location via a 360-degree camera, either with or without a virtual body. We first conducted a pilot study of 20 participants, followed by a pre-registered 62 participant confirmatory study. Whereas the pilot study showed greater presence and preference when the virtual body was present, the confirmatory study failed to replicate these results, with only behavioral measures suggesting an increase in presence. After analyzing the qualitative data and modeling interactions, we suspect that the quality and style of the virtual arms, and the contrast between animation and video, led to individual differences in reactions to the virtual body which subsequently moderated feelings of presence.Comment: Accepted for publication in Transactions in Visualization and Computer Graphics (TVCG), to be presented in IEEE VR 202

    Disclosure of study funding and author conflicts of interest in press releases and the news: A retrospective content analysis with two cohorts

    Get PDF
    Objectives To examine how often study funding and author conflicts of interest are stated in science and health press releases and in corresponding news; and whether disclosure in press releases is associated with disclosure in news. Second, to specifically examine disclosure rates in industry-funded studies. Design Retrospective content analysis with two cohorts. Setting Press releases about health, psychology or neuroscience research from research universities and journals from 2011 (n=996) and 2015 (n=254) and their associated news stories (n=1250 and 578). Primary outcome measure Mention of study funding and author conflicts of interest. Results In our 2011 cohort, funding was reported in 94% (934/996) of journal articles, 29% (284/996) of press releases and 9% (112/1250) of news. The corresponding figures for 2015 were: 84% (214/254), 52% (131/254) and 10% (58/578). A similar pattern was seen for the industry funding subset. If the press release reported study funding, news was more likely to: 22% if in the press release versus 7% if not in the press release (2011), relative risk (RR) 3.1 (95% CI 2.1 to 4.3); for 2015, corresponding figures were 16% versus 2%, RR 6.8 (95% CI 2.2 to 17). In journal articles, 27% and 22% reported a conflict of interest, while less than 2% of press releases or news ever mentioned these. Conclusions Press releases and associated news did not frequently state funding sources or conflicts of interest. Funding information in press releases was associated with such information in news. Given converging evidence that news draws on press release content, including statements of funding and conflicts of interest in press releases may lead to increased reporting in news

    Interconversion of intrinsic defects in SrTiO3(001)SrTiO_3(001)

    Get PDF
    Photoemission features associated with states deep in the band gap of n−SrTiO₃ (001) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons
    corecore