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Abstract

Animal models for cystic fibrosis (CF) have contributed significantly to our understanding of disease pathogenesis. Here we
describe development and characterization of the first cystic fibrosis rat, in which the cystic fibrosis transmembrane
conductance regulator gene (CFTR) was knocked out using a pair of zinc finger endonucleases (ZFN). The disrupted Cftr
gene carries a 16 base pair deletion in exon 3, resulting in loss of CFTR protein expression. Breeding of heterozygous
(CFTR+/2) rats resulted in Mendelian distribution of wild-type, heterozygous, and homozygous (CFTR2/2) pups. Nasal
potential difference and transepithelial short circuit current measurements established a robust CF bioelectric phenotype,
similar in many respects to that seen in CF patients. Young CFTR2/2 rats exhibited histological abnormalities in the ileum
and increased intracellular mucus in the proximal nasal septa. By six weeks of age, CFTR2/2 males lacked the vas deferens
bilaterally. Airway surface liquid and periciliary liquid depth were reduced, and submucosal gland size was abnormal in
CFTR2/2 animals. Use of ZFN based gene disruption successfully generated a CF animal model that recapitulates many
aspects of human disease, and may be useful for modeling other CF genotypes, including CFTR processing defects,
premature truncation alleles, and channel gating abnormalities.
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Introduction

Cystic fibrosis (CF) is the most common lethal recessive genetic

disorder among individuals of European descent, affecting 1 in

every 2,500–3,500 newborns each year [1]. The disease is

characterized by multi-system pathology, including respiratory

complications, intestinal obstruction, exocrine pancreatic disease,

hepatoductal blockage, and absence of the vas deferens [2]. The

predominant cause of morbidity and mortality in CF results from

chronic pulmonary infection and inflammation. CF is caused by

mutations in the cystic fibrosis transmembrane conductance

regulator (CFTR) gene, encoding an anion channel expressed in

epithelial and other tissues.
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A variety of CF mice have been generated since the discovery of

Cftr in 1989 [3,4]. The mouse models, while presenting with CF-

related intestinal disease, fail to recapitulate many other manifes-

tations observed in patients. Nonetheless, CF mice have provided

a valuable tool for testing pharmaceutical and other interventions,

and investigating contributors to pathogenesis, including CF

modifier genes [5]. Porcine [6] and ferret [7] CF models exhibit

a respiratory phenotype closely resembling that observed in

humans, although prolonged gestational period, time to sexual

maturation, expense, and specialized care requirements have

significantly limited their widespread use.

The development of a CF rat (Rattus norvegicus) would provide a

number of advantages in comparison with available animal models

of CF. First, the rat has a very short gestational period (21–23

days) and time to sexual maturity (8 weeks), allowing rapid colony

propagation, breeding studies, and characterization of animals as

they mature shortly after birth. Second, there is considerable

interest regarding airway glandular function as a mediator of CF

respiratory failure [8]. Airway submucosal glands are believed to

underlie considerable pathology observed in human CF lungs.

Rats are an attractive model in this context because, unlike mice

but similar to humans, rats develop extensive submucosal glands

throughout the trachea to the level of bronchi [9]. Third, relative

to mice, rats are considerably larger in size, even during the early

postnatal period, allowing for larger tissue samples to be collected

from animals and ease performing surgical procedures [10]. Rats

are also a traditional species for pharmacology and toxicology

research due to their well-defined pharmacokinetic and biodis-

tribution profiles [11,12]. Previous CF studies have sometimes

required transgenic mice for efficacy, with safety studies conducted

in rat; however, a CF rat model would facilitate pharmaceutical

efficacy and safety studies of potential therapeutic molecules in the

same species. Finally, because rats have been well studied in the

laboratory for years, there is a large body of literature regarding

normal physiology and a vast array of laboratory tools and

reagents (i.e. antibodies, siRNA, other genomic probes) readily

available for the study of chaperone, binding partner, and other

protein based analyses relevant to disease mechanism that would

be very difficult to obtain for ferret or pig.

Recent advances in gene manipulation techniques have

provided a number of opportunities for developing genetically

modified animals other than mouse. Zinc-finger endonuclease

(ZFN) technology, for example, allows targeting of user-defined

site-specific mutations that generate knockout animals with high

efficiency and over a shorter time line than embryonic stem-cell

targeting used in many species other than mouse [13,14]. Here, we

describe the generation of a CFTR2/2 rat by pronuclear

microinjection of ZFNs and its characterization. The disease

phenotypes observed in young (21–44 days postnatal) CFTR2/2

animals, which closely resemble human manifestations, suggest the

rat model will be useful for studies of CF pulmonary pathogenesis

and drug development.

Materials and Methods

Ethics Statement
This study was carried out in compliance with the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health. Protocols were approved by the SAGE Labs, Inc. or

University of Alabama at Birmingham (UAB) Institutional Animal

Care and Use Committee (IACUC; SAGE Approval Number

001.02, UAB Approval Number 09479). All surgeries were

performed under sodium pentobarbital or ketamine/xylazine/

acepromazine anesthesia with all efforts made to minimize animal

suffering.

Generation of the Model
ZFN mRNA preparation. Cftr specific ZFNs were obtained

from the CompoZr product line (Sigma, St. Louis, MO). mRNA

was prepared from each construct, linearized with XhoI and

modified using MessageMax and Poly(A) polymerase tailing kits

(Epicentre Biotechnology). Samples were purified, quantified, and

transfected at a 1:1 ratio into rat C6 cells for activity validation.

Animal husbandry. Derivation and breeding of animals was

conducted at SAGE Labs (microinjection and founder identifica-

tion/breeding) operated under approved animal protocols over-

seen by the SAGE IACUC. Sprague Dawley rats (Ntac:SD) from

Taconic Farms (Hudson, New York) were used for microinjection.

Animals were bred with housing in standard cages maintained on

a 12 h light/dark cycle with ad libitum access to food and water.

Routine health monitoring of the colony was performed at

IDEXX (Columbia, MO) and indicated no evidence of infection

with known serious pathogens.

Microinjection. Four to five week-old female donors were

injected with 20 units of pregnant mare serum gonadotropin

(PMS) followed by injection of 50 units hCG after an additional

48 h, and immediately mated with stud males. Fertilized eggs were

harvested a day later. Cftr ZFN mRNA was microinjected at

10 ng/ml into the pronucleus of fertilized eggs. Following

microinjection, 25–30 eggs were transferred into each pseudo-

pregnant female, leading to birth of the founder generation.

Founder identification and breeding. Tail or toe biopsies

were used for genomic DNA extraction and analysis as

described previously [15]. Primers flanking the target site were

forward 59- AATATCTGGGTGGGCAGTTG and reverse 59-

TTGTTTGCAAGATTGCCCTT. Primers used to detect larger

deletions were LD forward 59-TACGCAATGCCAAGAAGTCA;

LD reverse 59-GAGGATGTTGGGAAGCTTTG. A founder was

selected and bred with wild-type to obtain heterozygous animals,

and sibling mating of heterozygotes resulted in homozygous SD-

CFTRtm1sage rats (termed CFTR2/2).

Characterization of the Model
Animals. All animal experiments at UAB were conducted in

accordance with UAB IACUC approved protocols. Male and

female Sprague-Dawley CFTR+/2 rats were paired and housed in

HEPA filtered ventilated cages with a 12 hour light/dark cycle and

provided sterilized food and water ad libitum. Litters remained with

lactating dams until weaning. Heterozygous rats were separated

from wild-type and CFTR2/2 littermates. Heterozygous animals

exhibited growth and survival rates similar to wild-type, did not

develop intestinal obstruction, and presented with normal

dentition and complete male reproductive organs. In preliminary

studies, CFTR heterozygotes also exhibited similar bioelectric and

other characteristics to wild-type. In order to preclude any subtle

confounding variables, CFTR+/2 carriers were excluded from

data analysis shown in this manuscript. Wild-type and CFTR2/2

animals were provided water and standard rodent chow (pellet and

ground) with a supplemental diet of DietGel 76A (Clear H2O). A

subset of wild-type and CFTR2/2 pups were also provided 16
GoLytely (Braintree Laboratories, Inc) at weaning as a means to

reduce gastrointestinal complications.

PCR genotyping. DNA analysis of litters was performed by

extracting tail snip genomic DNA prepared in 500 mL lysis buffer

(200 mM NaCl, 100 mM Tris-HCl, 5 mM EDTA, 0.25%

Tween-20) with 1 mg Proteinase K (Sigma P6556) overnight at

room temperature, followed by 60uC incubation to complete tissue

Characterization of a CFTR-Knockout Rat

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91253



lysis. DNA was obtained by standard techniques with 2-propanol,

70% ethanol, and DNA stored TE buffer (10 mM Tris-HCl,

1 mM EDTA) at 220uC. For PCR, 1 mL of DNA was mixed with

8 mL H20, 10 mL JumpStart Taq ReadyMix (Sigma P2893), and

0.5 mL each primer (forward 59-GCAGCTCACTGGTC-

GATCTT, reverse 59-GACACTATATTCACAAGGGAGAG).

PCR conditions were 95uC for 5 minutes, followed by 35 cycles of

95uC for 30 seconds, 60uC for 30 seconds, and 68uC for 40

seconds, with a fixed cycle at 68uC for 5 minutes. This PCR

resulted in amplification of a 172-bp DNA fragment for the wild-

type Cftr allele and a 156-bp DNA fragment (16-bp deleted) for

mutant Cftr. PCR products were resolved on a 3.5% agarose gel.

Western blotting. Lung tissue was homogenized in TBS on

ice followed by lysis in RIPA buffer (ThermoScientific, Rockford,

Il) with Halt protease inhibitor cocktail (ThermoScientific). Protein

was quantitated using the BCA assay (ThermoScientific), samples

mixed with 46 sample buffer, and incubated at 37uC for 10

minutes. Equal amounts of protein (20 mg) were loaded into each

lane, resolved by SDS-PAGE, and blotted onto PVDF mem-

branes. Wild-type Sprague-Dawley rat lung extract (Sc-2396,

Santa Cruz Biotechnology, Inc, Dallas, Tx) was used as an

additional positive control for CFTR detection. Blocking was with

1% rabbit serum followed by incubation with goat anti-CFTR

primary antibody (1:200 Sc-8909) overnight at 4uC, and

subsequent rabbit anti-goat HRP conjugated secondary antibody

(1:5000 Sc-2768) for 1 hour at room temperature. Labeled

proteins were detected using SuperSignal West Femto ECL kit

(ThermoScientific).

Histology. Left lung lobes were cannulated and inflation

fixed with 1% paraformaldehyde at 30 cm pressure for 30–60

minutes, followed by storage in 10% buffered formalin. Nasal

tissue was collected, mandible removed, and nasal passages flushed

retrograde with 10% buffered formalin followed by immersion in

formalin until processed [16]. Nasal samples were decalcified for

4–5 days in Immunocal (Decal Chemical Corporation, Tallman,

NY) solution, and rinsed thoroughly. The nasal cavity was

sectioned into four regions at specific anatomic sites as described

previously [17,18]. All other tissues were harvested, immersion

fixed in 10% buffered formalin or 70% ethanol/formalin and

stored at 4uC until processed. Tissues were embedded in paraffin,

sectioned, and stained with hematoxylin and eosin (H&E) for

evaluation by a board certified veterinary pathologist. Nasal,

tracheal, lung, and intestinal tissues were stained with alcian blue

periodic acid Schiff (AB-PAS) for identification of mucosubstances.

Sections were imaged on an Olympus BX-41 microscope with a

digital Q-color 5 camera (Olympus) using Q Capture imaging

software (Q Imaging, Surrey, Canada) [19].

Quantitation of intracellular mucus in the nasal

septa. The amount of stored mucosubstance in upper respira-

tory epithelium was estimated by quantifying the area of AB-PAS

positive tissue per unit basement membrane. Septa from proximal

nasal samples were evaluated at 206, providing 4–6 fields (entire

length of septa) per animal. Images were imported into ImageJ

(NIH) and colors separated using the RGB stack feature. Using a

green channel, areas of interest were outlined using the polygon

tool and maximum threshold set for each image to include all

stained intracellular mucus.

Morphometric analysis of tracheal tissue. Tracheas were

imaged at 46 and 206 magnification followed by analysis with

ImageJ (NIH) using protocols modified from Meyerholz et al. [20].

For each animal, three tracheal sections were studied (with a

minimum distance of 15 mm between sections) using the following

parameters. Lumenal circumference was determined by measuring

the apical surface of the epithelium. Cartilage area was quantified

by outlining cartilaginous tissue in the tracheal ring, measuring the

area, and summing area for all cartilage in each image. Maximal

cartilage thickness was evaluated by determining the perpendic-

ular distance between outer boundaries of cartilage rings, with

epithelial thickness represented by the distance between the

basement membrane (on the serosal surface) and the apical

membrane lumenally. Submucosal gland area was determined by

circling and measuring both serous and mucus components of the

gland structures. Submucosal gland intracellular mucus was

assessed by outlining the entire submucosal gland area (same

protocol as for quantitation of intracellular mucus in the nasal

septa), in order to define the extent of intracellular mucosubstance.

The percent of intracellular mucus was determined as the ratio of

intracellular mucus/total submucosal gland area.

Bioelectric Measurements
Nasal potential difference. Rats were anesthetized with

ketamine (200 mg/kg), acepromazine (0.6 mg/kg), and xylazine

(30 mg/kg) by intraperitoneal injection. Potential difference was

measured using AgCl electrode and electronic data capture (AD

Instruments) as previously described for mouse and human

[21,22]. Nasal cavities were perfused sequentially with 1) Ringer

solution containing 140 mM NaCl, 5 mM KCl, 1 mM MgCl2,

2 mM CaCl2, 10 mM HEPES, and 100 mM amiloride (pH 7.3);

2) Cl–free Ringer solution (6 mM Cl2, pH 7.3) with amiloride;

and 3) Cl–free Ringer solution, amiloride, and forskolin (20 mM).

Each condition was studied for 5 to 10 minutes until a stable signal

was achieved. Traces were interpreted in a blinded fashion.

Tracheal short-circuit current (ISC). Tracheas were ex-

cised, sectioned into 3–4 segments, and opened longitudinally

along the dorsal surface. Segments were mounted as flat sheets in

modified Ussing chambers (area ,0.031 cm2) maintained at 37uC
and bubbled vigorously with 95% O2:5% CO2.

ISC measurements were performed under voltage clamp

conductions using MC8 equipment and P2300 Ussing chambers

(Physiologic Instruments, San Diego, CA). Tissue segments were

equilibrated for 10 minutes in regular Ringer solution that

contained (in mM) 120 NaCl, 25 NaHCO3, 3.33 KH2PO4, 0.83

K2HPO4, 1.2 CaCl2, 1.2 MgCl2, and 10 mannitol to establish a

baseline and then tested by one of the following experimental

protocols:

1. Administration of amiloride (100 mM) to inhibit the epithelial

sodium channel (ENaC), followed by sequential addition of

forskolin (10 mM) to activate cAMP-dependent CFTR current,

ATP (10 mM) to activate Ca2+- activated chloride channel

(CaCC) transport, and bumetanide (100 mM) to block

transepithelial Cl2 transport.

2. Administration of CFTRInh-172 (10 mM) to block constitutively

active CFTR dependent chloride current, followed by

sequential addition of amiloride, ATP, and bumetanide as

above.

Changes in ISC attributable to ion transport agonists and

inhibitors were calculated following achievement of a stable

plateau for several minutes. ATP-sensitive ISC was measured as the

highest current value for each sample [21].

Ileal ISC measurements. Tissue segments approximately

8 mm in length sectioned 5 cm above the cecum were stripped of

the serosa (visceral peritoneum) and longitudinal/circular muscle

layers of the intestinal wall, opened longitudinally along the

mesenteric border, and incubated in TTX (Tetrodotoxin,

3.361024 mM in PBS) for 10 min to block action potential

dependent sodium channels. Segments were mounted as flat sheets

Characterization of a CFTR-Knockout Rat
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onto sliders (area ,0.09 cm2) and ISC measured under voltage

clamp conditions using MC8 equipment and P2300 Ussing

chambers (Physiologic Instruments, San Diego, CA) as previously

described [23]. Bath solutions were gently stirred and gassed with

95% O2:5% CO2.

Regular Ringer solution was utilized for monitoring ISC as

above. Low Cl2 Ringer contained (in mM) 1.2 NaCl, 25

NaHCO3, 3.33 KH2PO4, 0.83 K2HPO4, 1.2 CaCl2, 1.2 MgCl2,

141 Na gluconate, and 10.8 mannitol. Sliders with mounted ileum

were equilibrated for 10 minutes in Ringer solution followed by 10

minutes of recording; mucosal side chambers were changed to 1:1

regular Ringer:low Cl2 Ringer. Indomethacin (10 mm) was added

to both chambers to block ion transport associated with

phospholipase C or A2 activity induced by seromuscular stripping.

After 30 minutes of incubation, forskolin (10 mm) and IBMX (3-

Isobutyl-1-methylxanthine, 100 mm) were added to both cham-

bers, followed by glybenclamide (200 mM) to block forskolin-

activated CFTR short-circuit current.

In all experiments, fully stimulated current was obtained within

3 minutes of forskolin addition. Pulse during voltage clamp

measurements was imposed every second after forskolin/IBMX

stimulation, and every 20 seconds following other drug treatments.

Micro Optical Coherence Tomography (mOCT)
Tissue preparation. Tracheal tissue was excised, immedi-

ately placed on Gelfoam soaked in DMEM/F12 1: 1 media, and

incubated under physiologic conditions (37uC, 5% CO2, and

100% humidity) using an environmentally controlled chamber

(Pathology Devices, Westminster, MD). Tracheas were equilibrat-

ed for 30 minutes before analysis.

Image acquisition. Measurements of functional microana-

tomic parameters in tracheal tissue, including measurement of (i)

airway surface liquid (ASL) depth, the aqueous layer lining the

airway epithelium, (ii) periciliary liquid (PCL) depth, the thin

aqueous gel surrounding the cilia, (iii) ciliary beat frequency (CBF),

and (iv) velocity of mucociliary transport (MCT) were performed

using Micro-Optical Coherence Tomography (mOCT), a high-

speed, high-resolution microscopic reflectance imaging modality

[24]. mOCT methods for investigation of airway epithelia and

quantitative image analysis have been previously described

[24,25]. In brief, the mOCT instrument provides cross-sectional

images of epithelium with a transverse and axial resolutions of

approximately 2 mm and 1 mm, respectively. This resolution is

sufficient to directly visualize and quantify parameters including

ASL depth, PCL depth, CBF, and MCT rate without using

exogenous dyes or particles. Acquisition speed is 20,480 Hz line

rate, resulting in 40 frames per second at 512 lines per frame.

Image analysis. Quantitative analysis of ASL and PCL

depths were characterized directly by geometric measurement of

the respective layers, and images over several frames captured the

length of fully extended cilia. CBF was investigated by Fourier

analysis of the reflectance due to beating cilia. MCT rate was

determined using time elapsed and distance traveled of native

particulates in the mucus over multiple frames. Images were

acquired at randomly chosen locations on the mucosal surface

with the optical beam scanned along the longitudinal axis of the

trachea.

Bronchoalveolar lavage fluid cell differentials. Tracheas

were cannulated and lungs lavaged with 2.0 mL PBS (7.4 pH).

Cells were collected by instilling 2.0 mL phosphate buffered saline

(pH 7.2) and the lavage centrifuged onto slides (Cytospin). Slides

were stained using Hema 3 stain kit (Fisher Scientific, Kalamazoo,

MI) [26]. A minimum of 300 cells were counted per animal.

Complete Blood Counts (CBC) and serum

chemistry. Blood (200–500 mL) was collected from the brachial

artery into EDTA tubes and processed for CBC by ANATECH

Diagnostics (Smyrna, GA). For serum chemistry, whole blood

(300–500 mL) was processed in serum separator tubes and allowed

to clot at room temperature for 1 hour. Supernatant was obtained

by centrifugation at 10,0006g for 10 minutes, with serum placed

in a fresh tube and frozen at 280uC. Samples were thawed and

analyzed on an Abaxis VetScan using a Comprehensive Diagnos-

tic Profile rotor (500–1038, Union City, CA).

Statistical analysis. Data are expressed as mean 6 SEM or

as individual data points. Statistical significance was determined

using unpaired, two-tailed Student’s t-test or one-way ANOVA

using Prism (GraphPad, LaJolla, CA). For survival analysis,

Kaplan-Meier survival curves were plotted and statistical signif-

icance determined using the logrank test for trend. P values #0.05

were considered significant.

Results

Microinjection and Founder Identification
A pair of ZFNs was confirmed to cleave the target site within

exon 3 of Cftr, shown in Figure 1A. Following microinjection and

embryo transfer, 44 pups were born to six recipients, 18 of which

carried at least one mutant allele. The mutations ranged from 9 bp

to hundreds of base pairs in length. Seven founders carried the

same 9 bp deletion (Figure 1B), presumably due to microhomol-

ogy within the target site, as discussed previously [15]. One

founder was mosaic, harboring wild type Cftr allele, an allele with a

16 bp deletion and an allele with a 479 bp deletion. Larger

deletions were observed to span the junction of exon 3/intron 3.

Heterozygous rats with the 16 bp deletion (a frameshift in the

reading frame leading to premature termination in exon 4)

(Figure 1C), were used to establish a breeding colony.

Litter Demographics
Four breeding pairs of CFTR+/2 rats gave rise to 332 pups

from 30 litters with an average litter size of 11 pups. Litters were

analyzed by PCR (Figure 2B) and found to have a genotype

distribution of 27.1% wild-type, 49.4% heterozygous, and 23.5%

CFTR2/2, a result similar to the expected 1:2: 1 inheritance

pattern. Western blot of whole lung homogenates from wild-type

and CFTR2/2 animals confirmed that the 16 bp deletion resulted

Figure 1. Targeting in exon 3 of Cftr. (A) ZFN recognition site
sequence. The two ZFN binding sites are in bold uppercase. Cleavage
site is in lower case. (B) Nine base pair deletion recovered in multiple
founders. The deleted sequence is shown in gray. Microhomology that
may have favored this deletion is marked in boxes. (C)Schematic of the
gene structure of the first 5 exons of rat Cftr. Exons are shown by filled
rectangles with exon number above. ATG, position of the translational
start codon; D16 bp marks the position of 16 bp deletion, with
nucleotide sequence below). *indicates premature stop mutations
introduced by the 16 bp deletion in exon 3.
doi:10.1371/journal.pone.0091253.g001
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in loss of CFTR protein expression (Figure 2C and Figure S3). At

birth, body weight and overall body size were similar between

wild-type and CFTR2/2 animals; however, begining in the

second week following birth, CFTR2/2 rats gained weight more

slowly than wild-type littermates (Figure 2A, 2D). Survival of

CFTR2/2 rats was similar to wild-type until weaning, but was

greatly reduced by 6 weeks (30% vs 99%, p#0.05; Figure 2E).

Mortality was associated with weight loss secondary to gastroin-

testinal complications (including obstruction, see also below).

Addition of GoLytely to water resulted in significantly improved

survival rates of CFTR2/2 animals at 6 weeks of age (30% vs

64%, p#0.05; Figure 2E).

Ileal Tissue
CFTR2/2 rats developed intestinal obstruction after weaning

and exhibited significant weight loss and decreased survival.

Histological evaluation of small intestine demonstrated epithelial

cell sloughing and crypts dilated with mucus, as well as a

qualitative increase in bacterial load (Figure 3A). Ileal tissue was

evaluated for CFTR short-circuit current phenotype by Ussing

chamber measurements. Wild-type ileal tissue exhibited a strong

forskolin-stimulated current (150649 mA/cm2), which was absent

in CF rats (866 mA/cm2, p,0.0001; Figures 3B, C).

Stored Mucosubstances in Airway Epithelium of the
Proximal Septa

The respiratory epithelium of the nasal septum, immediately

posterior to the upper incisors, was evaluated and labeled for

intracellularly stored mucosubstance. Both wild-type and CFTR2/2

animals had normally developed epithelium consisting of a

pseudostratified columnar epithelium comprised of both goblet and

ciliated epithelial cells. CFTR2/2 animals had elevated levels of

intracellular mucus that encompassed a significant portion of the

airway epithelial cytosol (Figure 4A, Table 1), resulting in cells from

CF animals appearing thicker and swollen (‘‘stuffed’’) compared to

wild-type.

Nasal Potential Difference Measurements
To characterize electrophysiology of the upper airway, trans-

epithelial potential difference was monitored in response to a series

of pharmacologic ion channel regulators. CFTR2/2 rats had no

evidence of Cl2 dependent secretion upon stimulation of CFTR

mediated Cl2 transport by Cl–free Ringer with forskolin

(3.860.6 mV), whereas changes were robust in wild-type litter-

mates (29.362.7 mV, p#0.01; Figure 4B, C). There were no

differences between CF and non-CF following perfusion with

amiloride. These measurements indicate a bioelectric phenotype

consistent with absence of CFTR in the nasal airways, but without

concomitant increase in amiloride sensitive voltage, the conven-

tional ion transport pathway associated with sodium reabsorption.

Morphometric Analysis of Tracheal Rings
Tracheal morphology in young CF animals appeared grossly

similar between wild-type and CFTR2/2 genotypes (Figure 5);

however, morphometric analysis revealed important differences

attributable to absent CFTR (Table 1). While lumenal circumfer-

ence was not significantly different between wild-type and

CFTR2/2 rats at 3–6 weeks after birth, cartilage area was

significantly diminished in CF animals. CF rats also exhibited

reduced tracheal gland area (,50% compared to wild-type) even

after normalization for tracheal lumen circumference. Addition-

ally, at all time points during the 3–6 week growth period, alcian

blue positive (AB+) staining of submucosal glandular cells was

decreased in CF versus wild-type rats, suggesting that glandular

maturation in the CF animals was delayed in comparison to age-

matched controls.

Tracheal ISC Measurements
Baseline ISC of freshly excised trachea was significantly lower in

CFTR2/2 animals compared to wild-type (Figure 5B), a finding

predominantly attributable to CFTRInh-172 sensitive current. To

determine the contribution of Na+ transport to basal currents,

Figure 2. Generation of CFTR2/2 rats. (A) Animals at days 1 and 24
postnatal. (B) Results of PCR genotyping from a representative litter. (C)
Western blot indicating expression of CFTR in wild-type rats and
absence of CFTR protein from lungs of CFTR2/2 animals. Arrow - CFTR.
(D) Body weight values (mean 6 SD) from wild-type and CFTR2/2 rats
from 12 to 44 days postnatal. (E) Survival curve for CFTR2/2 rats from
postnatal day 1 to 44 (p,0.05 for all groups, n = 12–67 animals/group).
doi:10.1371/journal.pone.0091253.g002
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Figure 3. Histology and short-circuit current measurements from small intestines of wild-type and CFTR2/2 rats. H&E (bar = 200 mm)
and AB-PAS (bar = 100 mm) stained sections of the small intestines from wild-type and CFTR2/2 rats. (n = 3–5 animals/group) (B) ISC tracings from
wild-type and CFTR2/2 rat ileum. (C) Summary of forskolin stimulated current measurements from ileal sections. (n = 5 animals/group) ****p#0.0001.
doi:10.1371/journal.pone.0091253.g003

Characterization of a CFTR-Knockout Rat

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e91253



Figure 4. Proximal nasal histology and nasal potential difference measurements. (A) Low power magnification (46) H&E stained sections
from the proximal nasal passages bar = 500 mm. 206 images of ABPAS stained nasal septa from boxed areas bar = 25 mm. Arrowheads, cells swollen
with intracellular mucus; e, respiratory epithelium; g, submucosal gland; dashed line (–), basement membrane (n = 4 animals/group) (B) NPD tracings
from wild-type and CFTR2/2 rats. (C) Summary data from NPD measurements for Damiloride, DCl2-free Ringers, Dforksolin, and DCl2/2free Ringers+
forskolin. (n = 5 animals/group) **p#0.01.
doi:10.1371/journal.pone.0091253.g004
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amiloride was added apically (Figure 5B, left panel). The reduction

in ISC was similar for both wild-type and CFTR2/2 rats

(49611 mA/cm2 and 64621 mA/cm2, respectively; Figure 5C)

indicating comparable levels of sodium transport irrespective of

CFTR expression (Figure 5B, left panel; a finding similar to the

nasal ion transport phenotype, Figure 4). Subsequent addition of

forskolin did not confer substantial ISC activation in either group,

suggesting CFTR may be constitutively active in wild-type

sections, diminishing the additional activation otherwise expected

from forskolin. In contrast, ATP stimulated current was much

greater for CFTR2/2 animals (although maximal Cl2 currents for

both genotypes were comparable and inhibited by addition of

bumetanide), suggesting a compensatory increase of ATP-depen-

dent Cl2 transport in the absence of functional CFTR, as also seen

in humans [27]. To confirm that CFTR was constitutively active

in wild-type animals, an alternative protocol was developed to test

this interpretation (Figure 5B, right panel). Using the modified

assay, wild-type rats demonstrated a baseline current of 5476

102 mA, while current was far less (61617 mA) in CFTR2/2

animals. Addition of CFTRInh-172 reduced the current in wild-

type by 304663 mA, demonstrating high level basal CFTR

activity, whereas CFTRInh-172 had minimal effect on constitutive

current in CFTR2/2 rats (967 mA, p#0.001). ATP sensitive

currents were strongly inhibited by the addition of bumetanide.

Measurement of Functional Airway Microanatomy
We used mOCT to visualize and quantify the functional

microanatomy of the airway surface (Figure 6). Excised tracheas

from wild-type animals had significantly greater ASL depth

compared to CFTR2/2 rats (p#0.05; Figure 6). In addition,

PCL thickness was reduced in CFTR2/2 animals (p#0.05).

Ciliary beat frequency and mucociliary transport were not

different between wild-type and CFTR2/2 groups.

CFTR2/2 Male Rats Exhibit Bilateral Absence of the Vas
Deferens

Evaluation of gross genitourinary anatomy revealed absence of

the vas deferens in 6 week old CFTR2/2 male rats (Figure 7).

When sections from 6 month old males were evaluated

histologically, only connective tissue and vasculature were

observed with no evidence of the vas identified (data not shown).

CF rats have Abnormal Dentition
Incisors of wild-type rats presented with yellow-brown enamel

while CFTR2/2 rats exhibited white incisors (Figure 8A). Wild-

type rats maintained normally filed teeth while CF animals

exhibited grossly malformed dentition, possibly due to defective

physiological trimming. Without intervention, incisors of CF rats

developed dental malformations, including curvature of the

incisors and penetration of the hard palate (Figure 8B).

Lung and Major Exocrine Tissues from CFTR2/2 Rats are
without Pathology or Inflammatory Cell Infiltrates During
Early Life

Pulmonary sections from wild-type and CFTR2/2 rats appear

to develop normally from days 22 to 42 (Figure S1). In addition,

BAL profiles were not different between genotypic groups,

indicating the absence of overt pulmonary inflammation. Pancreas

and liver from young animals were also histologically normal

(Figure S2).

Hematology and Serum Chemistry
Hypoalbuminemia, decreased total protein, and increased

blood urea nitrogen (Table S1) were observed in CFTR2/2 rats.

Because many animals experienced substantial weight loss prior to

euthanasia, these findings may be attributable in part to

malnourishment and poor hydration. Serum electrolytes (Ca2+,

Na+, K+) were not different between wild-type and CFTR2/2

groups (Table S1). A trend towards increased blood glucose levels

was observed in CF animals with very high values in a subset (data

not shown) which is currently under investigation.

Red blood cells, hemoglobin, and hematocrit were all within

normal range for young animals. Total white blood cell counts

were not different between groups, although the differential was

influenced by genotype (Wild-type: 2164% neutrophils and

7664% circulating lymphocytes, CFTR2/2 animals: 5265%

neutrophils and 4466% circulating lymphocytes), likely attribut-

able to gastrointestinal or other stress-related complications

observed in CFTR2/2 animals.

Table 1. Morphometric analysis of respiratory tissue from 3–6 week old wild-type and CFTR2/2 rats.

Wild-type CFTR2/2

Nasal Septa

Intracellular mucus/basement membrane (mm2/mm) 3.560.9 7.560.9*

Trachea

Lumen circumference (mm) 5.560.3 5.160.2

Cartilage area (mm2) 0.6360.06 0.4260.03**

Cartilage area/lumenal circumference (mm2/mm) 0.1160.01 0.0860.01*

Maximum cartilage thickness (mm) 0.2060.01 0.1760.01

Epithelial thickness (mm) 11.560.7 9.961.09

Submucosal gland area (mm2) 0.05760.005 0.03260.006*

Submucosal gland area/lumenal circumference (mm2/mm) 0.01660.001 0.00660.001*

Submucosal gland intracellular mucus (mm2) 740961481 28776752*

% intracellular mucus 1262 8.462

Values shown as mean 6 SEM (n = 4–6 animals/group).
*p#0.05, **p#0.001 (Student’s t-test).
doi:10.1371/journal.pone.0091253.t001
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Figure 5. Tracheal histology and short circuit current measurements. (A) AB-PAS stained tracheal sections from 6 week old rats. Submucosal
glandular tissue indicated by arrowheads. Low magnification bar = 500 mm, high magnification bar = 50 mm (B & C) Summary data from Ussing
chamber short circuit current measurements. Panels on right depict a modified protocol designed to specifically detect baseline (constitutive) CFTR
function. (n = 3–6 animals/group) **p#0.01, ***p#0.001, ****p#0.0001.
doi:10.1371/journal.pone.0091253.g005
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Figure 6. Functional anatomy of rat trachea. (A) Representative time-averaged mOCT images of wild-type and CFTR2/2 tracheas. Higher
magnification insets (bottom left corner) show differences in ASL height between wild-type and CFTR2/2 animals. White magnification bar = 10 mm.
Red bars indicate ASL height. Mucus layer (mu), epithelium (ep), lamina propria (lp), and gland duct (gd) are also visualized. (B) Summary data for
airway surface liquid depth (ASL), periciliary liquid depth (PCL), ciliary beat frequency (CBF), and mucociliary transport (MCT). (n = 8–13 animals/group)
*p#0.05.
doi:10.1371/journal.pone.0091253.g006
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Discussion

We present here a novel cystic fibrosis rat with a number of

phenotypic characteristics that resemble the human disease. The

CF rat furnishes a new opportunity to investigate (i) developmental

processes that affect disease progression and severity, (ii) the

impact of CFTR and other ion channels with regard to ASL depth

in CF airways, (iii) contributions of ASL and PCL abnormalities to

manifestations of CF respiratory pathology, and (iv) the role of

CFTR in mucus synthesis and release.

Developmental defects attributable to absent CFTR have

received considerable recent attention, including abnormal airway

remodeling and tracheal formation [20], deficient levels of growth

hormone [28], absent vas deferens [7,29], and problems with

enamel deposition in teeth [30–33]. Similar to CF pig [20] and

human subjects [20,34], we observed reduced tracheal circumfer-

ence and a loss of submucosal gland area in the CF rat model

(Figure 2), supporting the notion that CFTR may play a critical

role during normal lung development [20]. The CF rat offers an

ideal opportunity to monitor phenotypes such as these more

longitudinally than has been practical in the past (e.g. from

intrauterine tissue formation to adulthood).

The rat model will also serve as a valuable resource for

investigating developmental events that lead to abnormalities of

the male reproductive tract. The majority (,99%) of men with CF

are sterile due to degeneration or complete absence of the vas

deferens [35]. In both the CF pig and ferret, the vas deferens is

poorly formed or absent at birth [7,29]. The most commonly

utilized CF animal model, the mouse, does not exhibit this feature.

CF rats have lost the vas deferens by 6 weeks of age. The role of

chloride secretion versus intracellular or other CFTR functions

with regard to vas deferens involution are not well understood, but

can be more readily characterized in vitro and in vivo using this new

animal model. The rat may also facilitate experiments intended to

determine the extent to which vas tissue destruction can be

ameliorated by early (e.g. prenatal) therapeutic intervention.

Another area of increasing interest is the development of dental

complications in CF subjects. Similar to observations in mice [33],

CFTR2/2 rats exhibit white incisors compared to yellow dentition

of wild-type littermates (Figure 8A). Moreover, by three months of

age CF rats demonstrate grossly malformed upper and lower

incisors, characterized by curved dentition and penetration of the

hard palate (Figure 8B). Additional studies are in progress to

determine whether this phenotype is the result of (i) dysregulated

growth and/or (ii) reduced wearing of the teeth, and the extent to

which hypomineralization or other defects in enamel contribute to

the findings [30,31,33,36]. Human data indicate that many CF

patients have diminished mineralization of enamel [37–40] which

may predispose to development of caries. The rat represents an

ideal means of further investigating this feature of clinical CF.

The relationship of ASL depth to pathogenesis of cystic fibrosis

lung disease has engendered considerable controversy. Previous

studies have concluded that depleted ASL is primarily responsible

for cystic fibrosis pulmonary damage, and associated with defects

in ciliary extension [41]. The present results in CFTR2/2 animals

indicate ASL depletion in lower airways (Figure 6) that is

qualitatively and quantitatively very similar to that noted in

human subjects [42], but without evidence of overt respiratory

pathology (Figure S1). Our findings establish that defective ASL

hydration can occur for several weeks without resulting in

manifestations of a CF pulmonary phenotype. While spontaneous

lung disease is absent in very young CF rats, it is important to note

that the animals described here have been housed in HEPA

Figure 7. Male CFTR2/2 rats have bilateral absence of the vas deferens by 6 weeks of age. Wild-type males (left) have an intact
reproductive tract. CFTR2/2 males (right) develop other reproductive organs, but exhibit absent vas at 6 weeks. T, testis; VD, vas deferens. (n = 3
animals/group).
doi:10.1371/journal.pone.0091253.g007

Figure 8. CF rats have abnormal dentition. (A) Wild-type rats (left)
have yellowish-brown enamel while CFTR2/2 rats (right) exhibit bright
white incisors. (B) Incisors from CF rats exhibit uncontrolled growth and
penetrate the hard palate. (n = 3 animals/group).
doi:10.1371/journal.pone.0091253.g008
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filtered ventilated cages. Future studies will determine whether older

animals maintained under more natural housing conditions develop

evidence of lower respiratory involvement. If such experiments fail

to elicit a CF phenotype, the findings would indicate that defects in

ASL and PCL hydration by themselves do not represent a

proximate cause of CF pathology. The rat model will therefore

furnish a valuable means to address unanswered questions

regarding airway surface hydration and cystic fibrosis pathogenesis.

Decreased ASL depth has classically been attributed to Na+

hyperabsorption as a consequence of absent CFTR [43–46].

Similar to what has recently been reported in CF pig [47] and

ferret [48], the cystic fibrosis rat does not exhibit sodium

hyperabsorption in either nasal or lower airways. Although

amiloride-sensitive sodium transport is not significantly different

between wild-type and CFTR2/2 rats, ASL depth is markedly

diminished (Figures 4 and 5). The abrogation of constitutively

active CFTR fluid secretion may provide part of the explanation

for ASL depletion in CF animals (as opposed normal levels of ASL

observed in the CF porcine model) [47]. Our findings therefore

suggest that CFTR (rather than ENaC) serves as the dominant

regulator of ASL depth in the rat airway in vivo.

It has recently been argued that mucus in cystic fibrosis lungs is

excessively viscous due to loss of CFTR dependent bicarbonate

secretion, and that the newly formed mucus gel fails to properly

expand [49]. We observed markedly increased mucus stores (i.e.

cells appear ‘stuffed’ with mucins; Figure 4) in epithelial cells from

the proximal nasal septa of CF compared to non-CF rats.

Histological findings such as these are compatible with an intrinsic

defect in mucus secretion/release [50]. CF pigs develop mucous

cell hyperplasia [51] qualitatively similar to that observed in our

young CFTR2/2 animals, and CF mice have also been reported

to exhibit a phenotype characterized by measurably increased

numbers of mucous cells [52]. Based on findings shown in Figure 4

and Table 1, the rat model should be useful for investigating

CFTR-dependent airway mucin synthesis, expansion, and release.

The generation of the first CFTR2/2 rat using zinc finger

nuclease technology suggests a clear path to other CF animal

models with specific mutations relevant to therapeutic develop-

ment, including animals that express F508del or CFTR premature

truncations alleles. The advantages of a rat model for CF drug

development include robust and multi-organ bioelectric and

histological findings, ease of breeding, short gestation, manageable

expense, availability of antibodies and other reagents for

mechanistic studies, and standard use for pharmacokinetic and

drug toxicity analysis.

In summary, the CFTR2/2 rat exhibits many features of the

CF phenotype found in human subjects and CF animal models

(summarized in Table 2), including defects in airway mucus

production (Figure 4), tracheal development (Table 1), airway

surface and periciliary fluid depth (Figure 6), nasal mucus

(Figure 4), dentition (Figure 8), and involution of the vas deferens

(Figure 7). Bioelectric findings in rat are also informative and

demonstrate significantly diminished periciliary fluid without

evidence of ENaC hyperactivity. Moreover, unlike the CF ferret

or pig, the CFTR2/2 rat does not present with meconium ileus at

birth. Only after weaning do large numbers of animals develop

intestinal blockage, which appears similar to the distal intestinal

obstruction syndrome observed in children and adults with cystic

fibrosis [53]. Complications due to intestinal obstruction can be

managed by use of dietary modification (Figure 2). The new CF

rat model will provide a very useful resource for longitudinal

studies of tissue development, electrophysiology, and other end-

points relevant to disease mechanism in the future.

Supporting Information

Figure S1 Analysis of lung tissue from CF rats. (A) Lung

histology of wild-type and CFTR2/2 animals. Magnification

bar = 200 mm (n = 7–11 animals/group) (B) Total cell counts and

cell differential of BAL in wild-type and CF rats (n = 4 animals/

group).

(TIF)

Figure S2 Histology of pancreas and liver from CF rats.
H&E stained paraffin sections of (A) pancreas and (B) liver from

22–44 day old wild-type and CFTR2/2 rats. Magnification

bar = 100 mm (n = 3–5 animals/group).

(TIF)

Figure S3 Expanded western blot (see Figure 2). Western

indicating absence of CFTR protein from lungs of CFTR2/2

animals and expression of CFTR in wild-type samples. Arrow - rat

CFTR (,150 kD as previously reported [54]); *indicates likely

CFTR degradation product commonly observed in CFTR

preparations. This experiment has been repeated three times in

separate animals with similar results.

(TIF)

Table 2. Summary of phenotypes across numerous CF species.

Human Mouse Pig Ferret Rat

Increased Stored Nasal
Mucus

NR Yes [52] Yes [51] NR Yes

Airway Surface Hydration NR Depleted [55] Not Depleted [47] NR Depleted

Sodium Hyperabsorption Yes [41,56], No [57] Yes [58], No [59] No [47] No [48] No

Hypoplastic Tracheal
Submucosal Glands

Inconclusive [20,34] NR Hypoplastic at birth [20] NR Hypoplastic 21–42 DPN

Intestinal Obstruction 13–17% MI, 7–8% DIOS
in childhood [60]

0–95% OB at
weaning [4]a

100% MI [61] 50–100% MI [7] ,70% OB between
weaning and 42 DPN

Vas deferens ,99% CBAVD [35] Normal Degenerate or absent
vas at birth [29]

Degenerate or absent
vas at birth [7]

Vas absent before 42
DPN

Dentition Abnormal [37–39] Abnormal [33] Abnormal [31] NR Abnormal

CBAVD – congenital bilateral absence of the vas deferens, DIOS – distal intestinal obstruction syndrome, DPN – Days postnatal, NR – Not reported, MI – meconium ileus,
OB – Obstruction.
aBackground strain and/or CFTR genotype dependent.
doi:10.1371/journal.pone.0091253.t002
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Table S1 CBC and serum chemistry for wild-type and
CFTR2/2 rats.
(DOCX)
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