315 research outputs found
Native submerged macrophyte distribution in seasonally-flowing, south-western Australian streams in relation to stream condition
Submerged macrophytes are important structural and biological components of many lowland streams with potential to support ecosystem processes in degraded streams, provided that growth is not excessive. In a low-gradient agricultural landscape, a survey was used to explore associations between submerged macrophyte growth, biodiversity and variables assessing stream condition in seasonally-flowing streams. These variables were sampled across fifty-three reaches on seven adjacent streams in the mediterranean climate region of south-western Australia. Native submerged macrophytes were present in 43 % of sampled reaches, forming two distinct macrophyte assemblages dominated either by Potamogeton spp. together with Otteliaovalifolia, or by Cycnogeton spp. The Potamogeton/Ottelia assemblage was present in degraded reaches with higher light availability and deposition of fine sediments, but did not show excessive growth, even under nutrient-enriched conditions. Conversely, Cycnogeton spp. were associated with shaded conditions and greater flow. Reaches with macrophytes present had significantly higher macroinvertebrate abundance and family richness than those without, although rarefied family richness was similar among reaches with and without submerged macrophytes. The more structurally complex Potamogeton/Ottelia assemblage supported a greater abundance of grazers, shredders and predators than the simpler Cycnogeton spp. In degraded agricultural streams, remnant and colonising populations of submerged macrophytes may compensate for loss of riparian-derived habitat and resources for macroinvertebrates, and thus the food supply for predatory species
Computational Methods for Stability and Control (COMSAC): The Time Has Come
Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications
A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data
Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
Estilos de relacionamento entre extensionistas e produtores: desde uma concepção bancária até o "empowerment"
Multi-source statistics:Basic situations and methods
Many National Statistical Institutes (NSIs), especially in Europe, are moving from single‐source statistics to multi‐source statistics. By combining data sources, NSIs can produce more detailed and more timely statistics and respond more quickly to events in society. By combining survey data with already available administrative data and Big Data, NSIs can save data collection and processing costs and reduce the burden on respondents. However, multi‐source statistics come with new problems that need to be overcome before the resulting output quality is sufficiently high and before those statistics can be produced efficiently. What complicates the production of multi‐source statistics is that they come in many different varieties as data sets can be combined in many different ways. Given the rapidly increasing importance of producing multi‐source statistics in Official Statistics, there has been considerable research activity in this area over the last few years, and some frameworks have been developed for multi‐source statistics. Useful as these frameworks are, they generally do not give guidelines to which method could be applied in a certain situation arising in practice. In this paper, we aim to fill that gap, structure the world of multi‐source statistics and its problems and provide some guidance to suitable methods for these problems
Data visualization in yield component analysis: an expert study
Even though data visualization is a common analytical tool in numerous disciplines, it has rarely been used in agricultural sciences, particularly in agronomy. In this paper, we discuss a study on employing data visualization to analyze a multiplicative model. This model is often used by agronomists, for example in the so-called yield component analysis. The multiplicative model in agronomy is normally analyzed by statistical or related methods. In practice, unfortunately, usefulness of these methods is limited since they help to answer only a few questions, not allowing for a complex view of the phenomena studied. We believe that data visualization could be used for such complex analysis and presentation of the multiplicative model. To that end, we conducted an expert survey. It showed that visualization methods could indeed be useful for analysis and presentation of the multiplicative model
Spatial electric load forecasting using an evolutionary heuristic
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability
Registered Replication Report: Dijksterhuis and van Knippenberg (1998)
Dijksterhuis and van Knippenberg (1998) reported that participants primed with a category associated with intelligence ("professor") subsequently performed 13% better on a trivia test than participants primed with a category associated with a lack of intelligence ("soccer hooligans"). In two unpublished replications of this study designed to verify the appropriate testing procedures, Dijksterhuis, van Knippenberg, and Holland observed a smaller difference between conditions (2%-3%) as well as a gender difference: Men showed the effect (9.3% and 7.6%), but women did not (0.3% and -0.3%). The procedure used in those replications served as the basis for this multilab Registered Replication Report. A total of 40 laboratories collected data for this project, and 23 of these laboratories met all inclusion criteria. Here we report the meta-analytic results for those 23 direct replications (total N = 4,493), which tested whether performance on a 30-item general-knowledge trivia task differed between these two priming conditions (results of supplementary analyses of the data from all 40 labs, N = 6,454, are also reported). We observed no overall difference in trivia performance between participants primed with the "professor" category and those primed with the "hooligan" category (0.14%) and no moderation by gender
- …
