510 research outputs found

    The Small Stellated Dodecahedron Code and Friends

    Get PDF
    We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges resp. vertices of a small stellated dodecahedron, making this code suitable for 3D connectivity. This code encodes 8 logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) as compared to 1 logical qubit into 9 physical qubits (plus 8 ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.Comment: 19 pages, 14 figures, comments welcome! v2 includes updates which conforms with the journal versio

    Superconducting properties of the pyrochlore oxide Cd2Re2O7

    Full text link
    We report the superconducting properties of the pyrochlore oxide Cd2Re2O7. The bulk superconducting transition temperature Tc is about 1.0 K, and the upper critical field Hc2 determined by the measurement of specific heat under magnetic fields is 0.29 T. The superconducting coherence length is estimated to be 34 nm. Specific heat data measured on single crystals suggest that the superconducting gap of Cd2Re2O7 is nodeless.Comment: 6 pages, 6 figures, 1 table, to be published in J. Chem. Phys. Solid

    Emerging infectious disease issues in blood safety.

    Get PDF
    Improvements in donor screening and testing and viral inactivation of plasma derivatives together have resulted in substantial declines in transfusion-transmitted infections over the last two decades. Most recently, nucleic acid testing techniques have been developed to screen blood and plasma donations for evidence of very recent viral infections that could be missed by conventional serologic tests. Nonetheless, the blood supply remains vulnerable to new and reemerging infections. In recent years, numerous infectious agents found worldwide have been identified as potential threats to the blood supply. Several newly discovered hepatitis viruses and agents of transmissible spongiform encephalopathies present unique challenges in assessing possible risks they may pose to the safety of blood and plasma products

    Pip and Pop: When auditory alarms facilitate visual change detection in dynamic settings

    Get PDF
    Dynamic and complex command and control situations often require the timely recognition of changes in the environment in order to detect potentially malicious actions. Change detection can be challenging within a continually evolving scene, and particularly under multitasking conditions whereby attention is necessarily divided between several subtasks. On-screen tools can assist with detection (e.g., providing a visual record of changes, ensuring that none are overlooked), however, in a high workload environment, this may result in information overload to the detriment of the primary task. One alternative is to exploit the auditory modality as a means to support visual change detection. In the current study, we use a naval air-warfare simulation, and introduce an auditory alarm to coincide with critical visual changes (in aircraft speed/direction) on the radar. We found that participants detected a greater percentage of visual changes and were significantly quicker to detect these changes when they were accompanied by an auditory alarm than when they were not. Furthermore, participants reported that mental demand was lower in the auditory alarm condition, and this was reflected in reduced classification omissions on the primary task. Results are discussed in relation to Wickens’ multiple resource theory of attention and indicate the potential for using the auditory modality to facilitate visual change detection

    Impact of b-value on estimates of apparent fibre density

    Get PDF
    Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n=78) aged 8-18 (mean=12.4, SD=2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from 0 – 6000 s/mm2. Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b=6000 s/mm2, median R2 = .34; b=4000 s/mm2, median R2 = .29; b=2400 s/mm2, median R2 = .21; b=1200 s/mm2, median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties

    Interactive computation and visualization of structural connectomes in real-time

    Get PDF
    Structural networks contain high dimensional data that raise huge computational and visualization problems, especially when attempting to characterise them using graph theory. As a result, it can be non-intuitive to grasp the contribution of each edge within a graph, both at a local and global scale. Here, we introduce a new platform that enables tractography-based networks to be explored in a highly interactive real-time fashion. The framework allows one to interactively tune graph-related parameters on the fly, as opposed to conventional visualization softwares that rely on pre-computed connectivity matrices. From a neurosurgical perspective, the method also provides enhanced understanding regarding the potential removal of a specific node or transection of an edge from the network, allowing surgeons and clinicians to discern the value of each node

    Some Applications of the Extended Bendixson-Dulac Theorem

    Get PDF
    During the last years the authors have studied the number of limit cycles of several families of planar vector fields. The common tool has been the use of an extended version of the celebrated Bendixson-Dulac Theorem. The aim of this work is to present an unified approach of some of these results, together with their corresponding proofs. We also provide several applications.Comment: 19 pages, 3 figure
    corecore