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1. Introduction
The popular toric or surface codes are members of a family of topological codes called
homological CSS codes [1–3] which can be obtained from tessellations of D-dimensional
manifolds. Curvature and topology of these manifolds determine features of these codes.
Although a code does not specify a specific physical layout or physical distance between
qubits, its prescription of which parity checks need to be measured dictates what high-precision
interactions need to be engineered between the physical qubits and ancilla qubits for measuring
parity checks. As such, a code based on a tessellation of a two-dimensional (2D) flat manifold
suits a planar 2D connectivity between qubits, while a three-dimensional (3D) representation of a
code in terms of a polyhedron could be used as a template of how physical qubits could be placed
and connected up in 3D.

In this paper, we continue the exploration of so-called hyperbolic surface codes [4,5] to
determine whether such codes, being block codes with high rate, have advantages over the
surface code. The work in [4] constructed various classes of hyperbolic surface codes based on
regular tessellations and numerically examined noise thresholds of these codes when subjected
to depolarizing noise (assuming noiseless parity checks). The work in [5] went one step further
by including effective noise in the parity check measurements themselves, focusing uniquely
on {4, 5}-hyperbolic surface codes. Breuckmann et al. [5] also showed how to do read/write
operations using Dehn twists if these block codes are used as a quantum memory. In this paper,
we focus on one of the smallest and simplest members of the hyperbolic surface code family,
namely a code which has a representation as a small stellated dodecahedron. Going beyond
the previous work, we examine the performance of the code when all elementary gates and
operations, including those in the parity check circuits, are noisy (more details of the circuit-level
noise model are given in §5).

The interest in the small stellated dodecahedron code is that it can pack logical qubits very
densely while, like the [[9, 1, 3]] surface code, still allowing for plain fault-tolerant parity check
measurements in combination with a look-up table decoder. Even denser packings of logical
qubits in block stabilizer codes are certainly feasible: there are non-CSS codes such as [[8, 3, 3]],
[[10, 4, 3]], [[11, 5, 3]], [[13, 7, 3]] and [[14, 8, 3]] codes listed in [6]. However, one may expect that
the construction of fault-tolerant parity check circuits for such codes requires resource-intense
methods such as Steane, Shor or Knill error correction (EC), or flag-fault-tolerance methods
[7,8]. Chao & Reichardt [7] also proposed fault-tolerant circuits for a non-topological [[15, 7, 3]]
Hamming code, using only 17 physical qubits in total: a disadvantage of this code is that the
weight of the parity checks is high, namely 8, and in the tally of 17 qubits all parity checks are
done using the same ancilla qubit.

We find that for a depolarizing circuit-level noise model the stellated dodecahedron code pays
for its dense storage with a pseudo-threshold which is a factor 19 lower than that of the Surface-
17 code. Despite this somewhat negative message, the methods developed in this paper lay the
groundwork for further exploration of these families of codes.

We start the paper by recalling the notion of homological CSS codes, illustrating this code
construction by a variety of examples in 2D, representable as star polyhedra, as well as a few 3D
and four-dimensional (4D) codes. In §3, we zoom in on the small stellated dodecahedron code,
while we zoom out again in §4 by formalizing the problem of optimally scheduling the entangling
gates of parity check circuits of LPDC codes or more specifically hyperbolic surface codes. We
apply these techniques in §5 to the dodecahedron code obtaining fault-tolerant circuits and
describing the decoding method. In §6, we report on the results of our numerical implementation,
which includes a direct comparison with the Surface-17 code. We end the paper with a discussion.

2. Homological CSS codes
Here, we briefly review the definition of homological CSS codes. We start with a regular
tessellation of a D-dimensional closed manifold. This defines a cell complex composed of i-cells,
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with i = 0, 1, . . . , D referring to the cell dimension. The i-cells span a vector space Ci = Z
dim(Ci)
2

whose elements will be called i-chains. Given such a cell complex, one can define a CSS code
by associating the i-cells with physical qubits, the (i + 1)-cells with Z-checks (i.e. generators of
elements in the stabilizer group which only involve Pauli Z operators) and the (i − 1)-cells with
X-checks (i.e. generators of elements in the stabilizer group which only involve Pauli X operators).
The number of physical qubits of the code is n = dim(Ci). A Z-parity check is associated with each
(i + 1)-cell and it takes the parity of the qubits/i-cells which form the boundary of the (i + 1)-cell.
Formally, the boundary operator ∂i+1 is defined as ∂i+1 : Ci+1 → Ci. Similarly, a X-parity check
is associated with each (i − 1)-cell so that it takes the X-parity of all qubits/i-cells which are the
co-boundary of the (i − 1)-cell (that is, which have the (i − 1)-cell as their boundary). Formally,
the co-boundary operator δi−1 is defined as δi−1 = ∂T

i : Ci−1 → Ci. The X- and Z-parity checks
commute because the boundary of any (i + 1)-cell and the co-boundary of any (i − 1)-cell overlap
on an even number of i-cells/qubits.

By the parity check weight of a X- or Z-parity check, we mean the number of qubits on which
this parity check acts non-trivially. The logical Z operators (denoted as Z̄) of the code are closed
i-chains which are not the boundary of any collection of (i + 1)-cells. Similarly, the logical X
operators (denoted as X̄) are closed i-cochains which are not the co-boundary of any collection of
(i − 1)-cells. The number of logical qubits of the code is given by k = dim(Hi(Z2)) where Hi(Z2) is
the ith homology group over Z2, that is Hi(Z2) = Ker(∂i)/Im(∂i+1). In the next sections, we discuss
some concrete code families.

(a) Two-dimensional hyperbolic surface codes and star polyhedra
Taking a surface (D = 2), the only choice is for qubits to be associated with 1-cells or edges so that
n = |E|. We only consider regular tilings of the surface. Such tilings can be denoted by the Schläfli
symbol {r, s}, meaning that each face is a regular r-gon and s of such r-gons meet at each vertex.
When {r, s} is such that 1

r + 1
s <

1
2 , the surface is negatively curved or hyperbolic. For 1

r + 1
s = 1

2
it is flat, and for 1

r + 1
s >

1
2 it is positively curved, providing a regular tiling of the sphere. The last

choice for {r, s} gives us all the Platonic solids (e.g. the dodecahedron {5, 3}) with trivial topology
of the sphere, hence not interesting for encoding quantum information using topology because
every closed loop can be contracted to a point.

To make a code out of a hyperbolic surface, one needs to close the surface, so it is topologically
equivalent to a many-handled torus. The Euler characteristic χ of such a tessellated closed surface
equals χ = 2 − 2g = |V| − |E| + |F| where |V|, |E| and |F| are the number of vertices, edges and
faces, respectively, and g is the genus of the surface. The surface encodes k = 2g logical qubits.
As was argued and reviewed in [1,4], hyperbolic surface codes based on an {r, s}-tiling have
an encoding rate k

n = 1 + 2
n − 2( 1

r + 1
s ) and distance d ≥ cr,s log n with some constant cr,s, which

depends on the tessellation.
Some of the smallest codes that one obtains from this construction can be represented as

uniform star polyhedra (table 1). Examples are the dodedecadodecahedron based on closing
a {5, 4}-tiling of the hyperbolic plane [5] with 60 qubits and the small stellated dodecahedron
obtained from closing a {5, 5}-tiling of the hyperbolic plane, depicted in figure 1. In its
representation as star polyhedron, a regular p-gon can be represented as a star- p

k -gon (k and p

mutually prime) whose vertices are generated by rotating by an angle 2πnp
k with integer n [9]. The

Schläfli-notation for a star polygon is { p
k }, that is, the pentagram is represented as { 5

2 } so that the
small stellated dodecahedron is denoted as { 5

2 , 5}.

(b) Some three- and four-dimensional examples based on regular tessellations
If we consider regular tessellations of 3D manifolds, we have the option of placing qubits on
edges or faces. As these are dual to each other, one can only construct one code from a given cell
complex, so let us imagine that we associate qubits with faces. As 3D manifolds are complicated
mathematical objects, it is best to restrict any discussion to concrete 3D cell complexes.
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Figure 1. The small stellated dodecahedron as a [[30, 8, 3]] code (a) and its dual polyhedron (b) which is called the great
dodecahedron. Both polyhedra have the same number of faces, vertices and edges. The vertices of the small stellated
dodecahedron lie at the stars where edges meet. With the qubits placed on the edges, the Z-checks of the small stellated
dodecahedron are described by intersecting pentagrammic faces, denoted as { 52 }. By computing the Euler characteristic χ
using the parameters in (c), it can be seen that the small stellated dodecahedron surface is topologically equivalent to the
surface with genus g= 4. These figures have been typeset using Stella. Online available at www.software3d.com/Stella.php.

Table 1. Some small uniform star polyhedra with |E| = n physical qubits, k = 2g= 2 − χ logical qubits, Z-
(respectively, X) parity check weight wtZ (wtX ) and Z- (respectively, X) distance dZ and dX . The distances dZ and
dX were determined using the algorithm described in [5]. A full list of uniform star polyhedra can be found at
https://en.wikipedia.org/wiki/List_of_uniform_polyhedra. We omit all uniform polyhedra with χ = 2, all polyhedra
with faces with 10 edges (Z-parity check weight 10) and all polyhedra with 120 physical qubits or more. N.O. indicates that the
surface represented by the polyhedron is not orientable. As each vertex looks the same (vertex-transitivity) in the polyhedron,
all X-checks have the same, fairly low, weight and act the same. Except for the small stellated dodecahedron, all dual polyhedra
have faces which are not regular polygons (they can be, say, arbitrary quadrilaterals), hence they are not star polyhedra. The
many polyhedra with more than one type of polygonal face can also be viewed as quotient spaces of the uniformly tiled
hyperbolic plane.

n k = 2 − χ wtZ (wtX ) dZ (dX )

tetrahemihexahedron U4 (a projective plane code) 12 1 3,4 (4) 3 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

octahemioctahedron U3 (a toric code) 24 2 3,6 (4) 4 (5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cubohemioctahedron U15 (N.O.) 24 4 4,6 (4) 3 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small stellated dodecahedron U34 (hyperbolic {5, 5}) 30 8 5 (5) 3 (3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

great dodecahedron U35 (dual to U34) 30 8 5 (5) 3 (3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small rhombihexahedron U18 48 8 4,8 (4) 3 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small cubicuboctahedron U13 48 6 3,4,8 (4) 4 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

great cubicuboctahedron U14 48 6 3,4,8 (4) 4 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

great rhombihexahedron U21 (N.O.) 48 8 4,8 (4) 3 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ditrigonal dodecadodecahedron U41 (hyperbolic {5, 6}) 60 18 5 (6) 3 (4) [4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small ditrigonal icosidodecahedron U30 60 10 3,5 (6) 4 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

great ditrigonal icosidodecahedron U47 60 10 3,5 (6) 4 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

great dodecahemicosahedron U65 60 10 5,6 (4) 5 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small dodecahemicosahedron U62 (N.O.) 60 10 5,6 (4) 5 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dodecadodecahedron U36 (hyperbolic {5, 4}) 60 8 5 (4) 6 (4) [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cubitruncated cuboctahedron U16 72 6 6,8 (3) 8 (4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A honeycomb is a set of polyhedra filling space such that each face is shared by two polyhedra.
We can use the Schläfli-symbol {p, q, r} to denote a regular honeycomb, meaning that r regular
polyhedra, each of type {p, q}, meet at a vertex. There is only one regular honeycomb, namely
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{4, 3, 4}, a tiling by cubes, which fills flat 3D space and can be wrapped into a 3-torus, hence
leading to the 3D toric code.

The 3D versions of the Platonic solids are 6 convex 4-polytopes: examples are {4, 3, 3} (tesseract)
and {5, 3, 3} (120-cell) and its dual {3, 3, 5} (600-cell). Instead of filling a flat space, these tile a
sphere. In other words, just as the dodecahedron is a regular tiling of the 2-sphere, one can
view these cells as regular tilings (by volumes) of the 3-sphere S

3. This implies that dim(H2) =
dim(H1) = 0, or no qubits are encoded in such objects. The Euler characteristic of these convex
polytopes is χ (S3) = |V| − |E| + |F| − |C| = 0 (with |C| the number of 3-cells). For example, the
120-cell {5, 3, 3} has |V| = 600, |E| = 1200, |F| = 720 and |C| = 120.

Similar to the stellation of a dodecahedron, one can also stellate or greaten a 120-cell or a
600-cell to obtain so-called star polychora with non-trivial topology. An example is the small
stellated 120-cell { 5

2 , 5, 3} which has |F| = 720 qubits, |C| = 120 Z-check cells, |E| = 1200 X-check
edges and |V| = 120 vertices, hence its Euler characteristic is χ = 120 − 1200 + 720 − 120 = −480.
As χ = ∑d

i=0(−1)i dim(Hi) and dim(H0) = dim(H3) = 1, it follows that −480 = dim(H1) − dim(H2),
hence allowing for the encoding of logical information.

In 4D, a natural choice is to put qubits on 2-cells, so that one associates a Z-check with each
3-cell and an X-check with each edge. Beyond the 4D toric code which corresponds to a filling of
flat 4D space, namely the honeycomb {4, 3, 3, 4} [10,11], generalizations of the hyperbolic surface
codes to 4D are known to exist as well [12,13]. These codes have a number of logical qubits k
which scales linearly with the number of physical qubits n, just like the hyperbolic surface codes.
Unlike the 2D hyperbolic codes, the distance of these codes has been shown to scale polynomially
with the number of physical qubits d ∈ O(nε) with 0< ε < 0.3 [13]. In principle one could create a
code starting with a regular tessellation of 4D hyperbolic space by 4-polytopes. To have a closed
4D hyperbolic manifold, one needs to find certain normal, torsion-free subgroups of the Coxeter
group [4,14] such that 4-cells related by generators of this group can be identified. One known
example is the orientable closed Davis manifold obtained from identifying opposing dodecahedra
in the 120-cell, viewed as a 4-polytope [15]. It encodes dim(H2) = 72 logical qubits and n = 144
physical qubits (and dim(H1) = dim(H3) = 24) [16].

In [14], an exhaustive search for finding normal torsion-free subgroups of the {5, 3, 3, 3}
tessellation of a 4D hyperbolic space is reported. In this tessellation, qubits are associated with
pentagons and dodecahedral cells act on 12 qubits. The X-checks correspond to tetrahedra in the
dual lattice (with Schläfli-symbol {3, 3}), having weight 4. Each qubit is acted on by 5 X-checks
(degX = 5) and 3 Z-checks (degZ = 3). Unfortunately, running MAGMA to find an exhaustive list
of small subgroups of this {5, 3, 3, 3} Coxeter group returns only one quantum code which encodes
k = 197 logical qubits (dim(H2) = 197) into n = 16320 physical qubits. For {5, 3, 3, 3} it is the only
example which has less than 4 × 104 physical qubits.

3. Features of the small stellated dodecahedron code
Some of the features of the small stellated dodecahedron code are summarized in figure 1. The
code encodes eight logical qubits (genus 4) into 30 and has distance 3. The Z-checks of the code are
given by the pentagrammic faces, that is a Z-check acts on the five edges of each pentagrammic
face. The X-checks are located at the vertices, i.e. an X-check acts on each of the five edges that
meet at a vertex. There are thus 12 X- and Z-checks each of weight wt(S) = 5. As the product of all
X-checks is I, the number of independent X-checks is 11 (and similarly there are 11 independent
Z-checks). The small stellated docecahedron is obtained by stellating the dodecahedron as in
figure 2, that is, we extend the edges until they meet at new vertices. One can understand the
emergence of logical operators due to stellation for this specific polyhedron.1

1For polyhedra one can also extend faces instead of edges; this is called greatening. An example is the greatening of the
octahedron into the stella octangula. As qubits are not defined on faces, this process does not create an interesting code. One
can stellate the icosahedron into the small triambic icosahedron (which is dual to U30; see table 1), but there does not seem to
be an interpretation of stellation as creating non-trivial topology in this case.
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Figure 2. Illustration of the small stellated dodecahedron construction by extending or stellating the edges of the (coloured)
regular dodecahedron until they intersect. The labelling of each vertex will be used to identify data qubits as well as the check
and logical operators. For example, the check operator localized at vertex 0 is SX0 = X(0,6)X(0,7)X(0,8)X(0,9)X(0,10).

The dodecahedron itself does not encode qubits but this trivial dodecahedron code has qubits
on its 30 edges and weight-3 X checks and weight-5 Z-checks which commute. Now we extend the
edges, creating new vertices at which these edges meet. For this new code we keep the weight-
5 dodecahedral Z-checks and add the weight-5 X-checks located at the 12 vertices where the
extended edges meet. The 20 weight-3 X-checks of the dodecahedron still commute with the
Z-checks and become possible logical operators.

In addition, the stellation process creates new weight-3 loops running along a triangle
connecting three vertices, and these loops cannot be the product of dodecahedral faces because
the edges of the triangle lie in a single plane. When we take the 12 vertices and only represent the
edges of the small stellated dodecahedron as a graph, one obtains an icosahedron (figure 3) which
allows one to see the linear dependencies between the 20 Z-loops. In figure 3, the triangle logical
Z-operators are represented by the highlighted green edges (any weight-2 Z operator would have
odd support on at least one X-check). Around each vertex the product of 5 of these triangular
Z-loops is a Z-check, hence the number of independent logical Z-operators is 20 − 12 = 8.
Similarly, the 20 vertices of the dodecahedron are logical X operators, but products of 5 of them
around a dodecahedral face are identical to one weight-5 X-check, so there are 20 − 12 = 8 linearly
independent logical operators. A possible basis for the logical operators is given in table 2.

The 3D representation of this code as a small stellated dodecahedron immediately suggests
(but does not necessitate) a placement and connectivity of qubits in 3D space. We have also argued
in [5] that any hyperbolic surface code can be implemented in a bilayer of qubits with CNOTs
required between the two layers while the connectivity between qubits in each layer is planar.
Recent experiments on superconducting qubits also demonstrate the feasibility of variable-range
planar (hyperbolic) connectivity between qubits [17].

4. Parity check scheduling for low-density parity check CSS codes
In general, fault-tolerant EC protocols for LDPC codes are implemented using entangling gates
between ancilla and data qubits in order to measure the parity checks. In this section, we assume
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Figure 3. Construction of the logical Z operators (Z̄) of the small stellated dodecahedron code from its disentangled graph,
the icosahedron, where each blue or red vertex corresponds to an X-check acting on all incident edges. Each green triangle is
a logical Z operator commuting with all X-checks. In the right figure one sees how a product of 5 logical Z operators, listed in
table 2, equals the Z-check SZ11. S

Z
11 is the Z-check associated with the face located above the vertex labelled 11 in figure 2.

Table 2. Set of independent logical X and Z operators of the small stellated dodecahedron code obeying X̄i Z̄j = (−1)δij Z̄j X̄i .
Each qubit is labelled by the edge (u, v) with vertices u, v ranging from 0 to 11 as in figure 2.

logical Z̄s logical X̄s

Z̄1 = Z(0,6)Z(0,8)Z(6,8) X̄1 = X(0,6)X(2,4)X(3,5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄2 = Z(0,7)Z(0,9)Z(7,9) X̄2 = X(0,7)X(1,4)X(3,5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄3 = Z(0,8)Z(0,10)Z(8,10) X̄3 = X(0,10)X(1,3)X(2,4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄4 = Z(1,7)Z(1,10)Z(7,10) X̄4 = X(1,7)X(4,8)X(5,11)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄5 = Z(2,5)Z(2,6)Z(5,6) X̄5 = X(2,6)X(3,11)X(4,10)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄6 = Z(3,7)Z(3,9)Z(7,9) X̄6 = X(2,4)X(3,5)X(3,7)X(4,10)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄7 = Z(5,6)Z(5,9)Z(6,9) X̄7 = X(1,11)X(2,8)X(5,9)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z̄8 = Z(0,8)Z(0,9)Z(6,8)Z(6,9) X̄8 = X(0,6)X(0,10)X(1,3)X(1,11)X(3,5)X(5,11)X(6,8)X(8,10)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that parity X-checks (respectively, Z-checks) are measured via the interaction of a single ancilla
qubit with wt(X) data qubits via CNOT gates (respectively, wt(Z) data qubits via CNOT gates).
Thus, at any point in time an ancilla qubit can interact via a CNOT with at most one data qubit.
Similarly, any data qubit can interact with at most one ancilla qubit. A relevant problem is to find
a scheduling of the CNOT gates which minimizes the number of time steps to measure all parity
checks (so as to suppress the occurrence of errors).

This scheduling problem for homological codes based on non-flat geometries is not as trivial as
it is for a surface code (or a 4D tesseract code [18]) where a local orientation and order in terms of
north, east, south, west can be parallel transported over the whole lattice [19]. This idea does not
translate to hyperbolic surface codes since the parallel transport of a vector around a closed curve
does not bring it back to itself (in other words, the parallel transported vector depends on the
path that one takes) capturing the local curvature. Hence, we formulate the scheduling problem
as an optimization problem which can be attacked numerically.

For starters, let us imagine that we consider a CSS LDPC (low-density parity check) code and
we wish to do all X-check measurements with maximal parallelism followed by an optimized
schedule for the Z-check measurements. In such a scenario, the optimization of the number of
time-steps in the measurement of all, say X-checks, corresponds to a graph vertex-colouring
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(a) (b)

Figure 4. Separate X and Z-scheduling graphs for the {6, 3}-tiling. In (a), the scheduling graph for Z-checks is shown, whereas
in (b) the scheduling graph for X-checks is shown. In (a), each qubit is replaced by two vertices connected by a blue edge. The
vertices of all qubits which participate in a hexagonal face are connected by red edges.

problem in a graph (to be defined) associated with the LDPC code. This graph and its colouring
problem is (non-uniquely) obtained as follows. Each data qubit q in the code is replaced by
degX(q) vertices, together forming the vertex set VX of the X-check scheduling graph GX. Here
degX(q) is the number of X-checks that the qubit participates in, hence the number of CNOT
gates that it has to undergo. The edges of GX are taken as follows. For each qubit q we make
a clique (complete subgraph) on its degX(q) vertices, capturing the constraint that none of the
CNOT gates are simultaneous. For example, for homological surface codes, we replace each qubit
by two connected vertices. Secondly, for each X-check of weight wt(X) we create a complete graph
Kwt(X) between the vertices which represent the qubits on which the parity check acts, capturing
the constraint that the CNOTs on the X-ancilla qubit cannot act simultaneously. Note that this
choice is not unique as each qubit has degX(q) possible representatives. For homological surface
codes, a natural choice which is the same for every edge and face is shown in figure 4. This gives
the edge set EX of the scheduling graph GX = (VX, EX).

Any vertex colouring with m colors of the graph GX gives a schedule which requires T = m + 2
time steps for the X-parity check measurements. In other words, the chromatic number χ (GX) of
the graph GX determines the number of required time steps. In the first time step, ancilla qubits
are prepared in |+〉. In the subsequent m time steps, CNOT gates are performed between data and
ancilla qubits with the colours of vertices represented by the data qubits labelling the time step
at which the CNOT is performed. Note that the colouring assignment only prescribes a temporal
ordering up to permutations of time slots. In the last time step, the ancilla qubits are measured.
A graph G with maximum degree �(G) always admits a vertex colouring, i.e. χ (G) ≤�+ 1 [20].
The degree of GX is�(GX) = degX + wt(X) − 2 when all qubits have the same degree degX and all
parity checks have weight wt(X). An example for a planar {6, 3}-tiling is shown in figure 4. Note
that, for {r, s}-hyperbolic surfaces codes, the degrees of these scheduling graphs are�(GX) = s and
�(GZ) = r.

However, in order to minimize the total number of time steps, it is advantageous to
simultaneously apply CNOTs for X- and Z-check measurements instead of scheduling X- and
Z-check measurements sequentially. Such an interleaved schedule has been worked out for the
surface code [19,21], leading to a minimal schedule which requires T = 4 + 2 time steps (including
ancilla preparation and measurement).

Determining an optimal interleaved schedule can again be mapped onto a graph colouring
problem obeying an additional constraint which ensures that there is no interference between the
two types of measurements. To construct the interleaved scheduling graph G, we replace each
qubit q by degq vertices, where degq is now the total number of parity checks that the qubit
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interleaving

Figure 5. The vertices and edges of the interleaved scheduling graph G for a code based on a {6, 3}-tiling: one takes the union
of the vertices and edges in the graphs GX and GZ and adds additional green edges so that each qubit is represented by a clique
of four vertices. In the highlighted ‘interleaving’ box, an X- and a Z-check act on the same pair of data qubits.

a

b

a

X|+Òx

|0Òz |0Òz

|+Òx
X

b

proper circuit improper circuit

Figure 6. The parity check circuits are proper when, for each pair of qubits a and b which are involved in a X- and a Z-check,
both qubits first interact with the X-ancilla and then the Z-ancilla or both first with the Z-ancilla and then the X-ancilla.
(a) Proper circuit and (b) improper circuit.

participates in. This constitutes the set of vertices V. As to the edges, we again make each cluster
of degq vertices into a clique. Then we add both the edges of the X- as well as the Z-checks as we
did separately in the graph GX and GZ. Figure 5 shows the example of the {6, 3}-tiling. For codes
with qubit degree deg, X-parity checks of weight wt(X) and Z-parity checks of weight wt(Z), the
degree of this interleaved scheduling graph equals�(G) = deg − 2 + max(wt(X), wt(Z)). For {r, s}-
surface codes, this results in �(G) = 2 + max(r, s) so that χ (G) ≤ 3 + max(r, s) because deg = 4. At
the same time, the chromatic number χ (G) ≥ max(r, s) because the graph contains cliques of size
r and s.

However, these colouring-based schedules may not be achievable because the CNOT order
is additionally constrained due to the non-commutativity of Pauli X and Z. To capture this
constraint in the colouring problem, one can focus on homological surface codes in which X-
checks and Z-checks have common support on either two or zero qubits (see also another
expression of the constraints in [22]).

Consider a pair of qubits, let us call them a and b, on which an X- and a Z-check both
have support (figure 6). Both these qubits have to undergo CNOTs with an X-ancilla, as well
as CNOTs with a Z-ancilla. Irrespective of what other data qubits are involved in the parity check
measurements, the outcomes of the two measurements are proper when, either both qubits first
interact with the X-ancilla and then with the Z-ancilla or vice versa. In these cases, one can deduce
(by propagating Pauli operators through the CNOT gates) that the measurement of Xx of the
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|+〉x ancilla equals the measurement of the observable XxXaXbIz. As the X-ancilla is prepared
in |+〉x, this is equivalent to XaXbIz. Similarly, a proper schedule shows that measurement of Zz

is equivalent to measuring IxZaZbZz, which is equivalent to IxZaZb due to the Z-ancilla being
prepared in |0〉z. For an improper circuit shown in figure 6b the outcome of the parity checks is
randomized because the X-check measurement depends on the expectation value of X on |0〉z

(and the Z-check depends on Z on |+〉x).
There is no general efficient algorithm to find the chromatic number of a graph because the

problem is NP-complete. However, for sparse graphs [23] (e.g. Theorem 5) discusses an efficient
algorithm under some assumptions. However, our problem is compounded by the additional
constraint that the schedule has to be proper. This means that a schedule of 5 rounds of CNOTs
for the small stellated dodecahedron code might not be achievable, at least we have not found it.
In addition, the schedule is required to be fault tolerant, which puts additional constraints on the
schedule. For the small stellated dodecahedron code, we have numerically obtained a sequential
non-interleaved X and Z-parity check schedule which is automatically proper.

We leave the existence of an efficient algorithm for determining a minimal-time parity check
schedule for LDPC codes (with sufficiently large distance) as an open question.

5. Fault-tolerant circuits for the small stellated dodecahedron code
In this section, we present the fault-tolerant methods that will be used to analyse the performance
of the small stellated dodecahedron code. The first step is to find a scheduling of the CNOTs used
to measure the checks as discussed in the previous section. By applying a degree of saturation
(greedy) algorithm [24], a separate schedule with five colours for both GX and GZ could be found
(figures 13 and 14). Consequently, all checks can be measured in 10 + 2 time steps (figure 14). For
this schedule we have verified that faults occurring during CNOT gates meet the requirements of
fault tolerance (see the discussion in §5a).

We consider the following circuit-level depolarizing noise model for our analysis:

(i) With probability p, each two-qubit gate is followed by a two-qubit Pauli error drawn
uniformly and independently from {I, X, Y, Z}⊗2 \ {I ⊗ I}.

(ii) With probability 2p/3, the preparation of the |0〉 state is replaced by |1〉 = X|0〉. Similarly,
with probability 2p/3, the preparation of the |+〉 state is replaced by |−〉 = Z|+〉.

(iii) With probability 2p/3, any single qubit measurement has its outcome flipped.
(iv) Lastly, with probability p/10, each resting qubit location is followed by a Pauli error

drawn uniformly and independently from {X, Y, Z}.

The reason to choose the idling location to have a lower error probability of p/10 is that it is
a reasonable assumption for actual qubits (such as trapped-ion qubits [25] or nuclear spin qubits
around a diamond NV centre [26]) and it brings out more clearly the effect of CNOT errors which
dominate the logical failure rate. Taking the idling location to have the same error probability p as
all other locations would give a disadvantage to the dodecahedron code versus the surface code
because the parity check schedule for the dodecahedron code has more qubit idling.

As was shown in [27] (see also the concise description in [8]), a d = 3 code should obey the
following fault-tolerance criteria for an EC unit in order that the logical error probability is
possibly below the physical error probability p:

Condition 5.1 (Fault-tolerant criteria for an EC unit of a distance-3 code).

(i) If the input state has r errors and the EC unit has s faults with r + s ≤ 1, then ideal
decoding of the output state of the EC will result in the same codeword as ideal decoding
of the input state.
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EC EC

exRec

Figure 7. Illustration of an extended rectangle (exRec). The EC unit consists of performing a round of fault-tolerant error
correction (in our case, three rounds of syndromemeasurements followed by the decoding protocol described in §5a). The exRec
consists of performing two consecutive ECs and its logical failure rate is determined by the occurrence of two malignant faults
which lead to logical failure on output.

(ii) Regardless of the number of errors in the input state, if there are s faults during the EC
unit with s ≤ 1, the output state can differ from a valid codeword by an error of at most
weight s.

Here, ideal decoding means a round of fault-free EC. Furthermore, by a fault we mean any
gate, state preparation, measurement or idle qubit failing according to the noise model described
above. The second criteria states that if E|ψ̄〉 is the input state with codeword |ψ̄〉 and wt(E) is
arbitrary, the output state must be written as E′|φ̄〉 where |φ̄〉 is a codeword and wt(E′) ≤ s ≤ 1.
Note that it is not required that |ψ̄〉 = |φ̄〉.

The second condition is particularly important in order to guarantee that errors will not
accumulate during multiple rounds of EC resulting in a logical fault. It was shown in [27] (and
applied in e.g. [28]) that it is the logical failure probability of an exRec (figure 7), instead of the
failure probability of a single EC unit that should be compared to the bare qubit failure probability
p in order to determine whether the lifetime of an encoded qubit will be longer than that of
an unencoded qubit. The reason is that single faults in each consecutive EC unit can lead to
logical failure because an incoming error and a fault in the unit can combine together. In the
literature, pseudo-thresholds for small distance codes are often computed using a single EC unit.
The pseudo-threshold is thus set by the total logical failure probability (probability of a logical X,
Y or Z error) of the exRec being equal to p. In §6, we explicitly show that the logical failure rate of
a single EC cannot be used to estimate the encoded qubit lifetime.

(a) Decoder for [[30, 8, 3]]
As the small stellated dodecahedron code is a distance-3 code, any single data qubit error in the
EC unit will be corrected. However, the stabilizer checks are weight 5 which implies, as shown in
figure 8, that a single fault occurring on some of the CNOT gates can lead to potentially dangerous
errors of weight 2. Note that for any check P with wt(P) = 5, a single fault occurring during its
measurement can lead to a data error E with weight at most 2 because min(wtX(E), wtX(EP)) ≤ 2.
Therefore, we need to ensure that any weight-2 errors E and E′ arising from a single fault during
the measurement of an X or Z check either have a unique syndrome compared to each other (s(E) 	=
s(E′)) and compared to single faults which lead to an outgoing weight-1 error, or if s(E) = s(E′),
then they must be logically equivalent (EE′ ∈ S where S is the stabilizer group).

A useful feature of the code is that the triangular logical Z operators in figure 3 overlap with
any weight-5 Z-check on at most 0 or 1 qubit: a triangular logical Z lies in a plane which intersects
the pentagrammic planes on at most one edge. However, an example of a problematic scenario
involving a product of these logical operators is shown in figure 9. In this scenario, both pairs of
qubits 1,4 and 2,3 could undergo Z errors arising from a single fault during the measurement of
the checks, and note that both pairs of errors have the same error syndrome but are not logically
equivalent. Thus, correcting the wrong error would lead to a logical fault. To resolve this issue,
for the parity check schedule given in figure 13, it was verified that every weight-2 X- or Z-error
arising from a single fault during a stabilizer measurement has a unique syndrome.
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Figure 8. Circuit for measuring a weight-5 X-check. A single X fault occurring after the third CNOT gate can propagate to two
data qubits resulting in two outgoing X errors. (Online version in colour.)
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!

!

Figure 9. Two pentagonal Z-checks, illustrated in green and blue, which overlap on two Z logical operators (in red). The pairs
of qubits, 1,4 and 2,3 are data qubits which can have Z errors arising from a single fault occurring during the measurement of
the two checks. The syndromes are indicated by the red exclamation marks.

With the above considerations, we now describe a decoding protocol which satisfies the fault-
tolerant criteria outlined in Condition 5.1. Given the size of the small stellated dodecahedron code,
it is possible to decode X and Z errors separately using full lookup tables (since each contains only
211 = 2048 syndromes). For a given syndrome s, the look-up table chooses the lowest weight error
E that corresponds to the measured syndrome. However, note that there can be weight-2 errors
E and E′ such that s(E) = s(E′) with EE′ ∈ N(S) \ S where N(S) is the normalizer of the stabilizer
group. Thus when constructing the look-up table, the corrections associated to all syndromes s(E)
where E is a weight-2 error that can arise from a single fault during a stabilizer measurement
should be E and not some other weight-2 error with the same syndrome as E and which is not
logically equivalent to E. Note that from the above discussion, this look-up table construction is
possible.

As with other distance-3 codes, a single round of syndrome measurement is not sufficient to
distinguish measurement errors from data qubit errors and would thus not be fault tolerant. To
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make our decoding scheme fault-tolerant, we use the following protocol:

Fault-tolerant EC unit (for either X or Z errors):
Perform three rounds of syndrome measurements resulting in syndromes s1, s2
and s3. Note that each round uses the CNOT scheduling depicted in figures 13
and 14.

(i) If at least two syndromes are trivial, apply no correction.
(ii) If at least two syndromes s are identical, apply the correction

corresponding to s using the lookup table.
(iii) If the first two conditions are not satisfied, apply the correction

corresponding to s3 (the last measured syndrome) using the lookup
table.

Note that this procedure could be implemented to fault-tolerantly decode any distance-3 code,
as long as one can pick a scheduling of the CNOTs (or other entangling gates) that guarantees that
all errors arising from a single fault have unique syndromes (and those with the same syndrome
are logically equivalent) and one uses these particular errors as the minimum weight corrections
in the look-up table.

We now give a rigorous proof that the above procedure satisfies the fault-tolerance criteria of
condition 5.1.

First, if there is an input error E with wt(E) = 1 and no faults during the EC rounds, then all
three rounds will report the syndrome s(E) and the error will be corrected. Now suppose there
are no input errors but a single fault occurs during the EC. If the fault occurs during the first
round, then rounds two and three will produce the same syndrome and the resulting error will
be corrected. If the fault occurs during the third round, then the first two rounds will yield a
trivial syndrome and no correction will be applied. However, the output error must then be a
correctable error. Thus ideally decoding the output would result in the input state. Now if the
fault occurs during the second round, then all three syndromes could be different (depending
at which time step the error occurred). There is also the possibility that s2 = s3. In both cases, a
correction corresponding to s3 would be applied removing all errors on the data. Hence, the first
criterion will be satisfied.

Lastly, we need to show that the second criterion is satisfied. In fact, we modify the second
criterion and demand that the output state differs from a valid codeword by an error which is
correctable by our ideal decoder (the ideal decoder is our Look-Up Table Decoder assuming no
further errors). As discussed, this could be an error of weight-2. This modification does not alter
the use of this condition in deriving fault tolerance [27].

In what follows, we will consider the case where the input error E has arbitrary weight. If
there are no faults during the EC, then all three syndromes will be equal to s(E). Hence applying
a correction E′ based on this syndrome will always project the code back to the code space
(i.e. EE′ ∈ N(S)). Now suppose there is a single fault during the first round of the EC. Then
the syndromes s2 = s3 will be the syndromes for the combined error E and the resulting
errors from the single fault during the first round. Thus correcting using s2 will always project
the code back to the code space. If the fault occurs during the second round, then, as in the
previous paragraph, the correction will correspond to the last syndrome s3 which includes both
the input error and the error arising from the fault. Thus, correcting using s3 will always project
the code back to the code space. Lastly, if the fault occurs during the third round, then the first
two syndromes s1 = s2 will correspond to the input error E. Let E′ be the resulting data qubit error
from the third round. Then correcting using the recovery Ẽ where EẼ ∈ N(S), the output state will
differ from a valid codeword by an error of weight wt(E’) ≤ 2, which is correctable using our
lookup table decoder.
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Figure 10. (a) and (b) show the total logical failure rate (probability of either an X , Y or Z logical fault) curve for the exRec of the
Surface-17 (pL(p)≈ 3000p2) code and the exRec of the small stellated dodecahedron code (pL(p)≈ 56488p2). The intersection
between these curves and the curve f (p)= p gives, in principle, the pseudo-threshold of the codes. Note however that since
idle qubits fail with probability p/10, for quantum memories, the relevant crossover point is given by the intersection with
the curve p/10 and not p. We find that it is (3.32 ± 0.01) × 10−5 for Surface-17 and (1.77 ± 0.01) × 10−6 for the small
stellated dodecahedron code. The orange lines correspond to the 95% confidence intervals. Since we performed 107 Monte
Carlo simulations, the width of the confidence intervals are small and thus overlap with the best fit curve represented by the
blue line.

6. Numerical results
In this section, we present numerical results for the pseudo-thresholds of the surface-17 code of
[21] and the small stellated dodecahedron code using the fault-tolerant decoding schemes and
circuit-level noise model presented in §5. To provide a fair comparison, we choose a sequential
X- and Z-check schedule also for the surface-17 code (such a sequential schedule may be a
necessity in some architectures anyhow; see e.g. the schedule in [29]). Some of the code can be
found at https://github.com/einsteinchris.

To obtain the average lifetime of a physical qubit, suppose that an error is introduced with
probability p at any given time step. The probability that an error is introduced after exactly t
time steps is given by fp(t) = (1 − p)t−1p. Thus the mean time before a failure occurs is given by∑∞

t=1 t fp(t) = 1/p. To obtain a lower bound on the lifetime of an encoded qubit, we can simply
replace p by the logical failure rate curve pL(p) of the exRec (see [27]). For a distance-3 code,
pL(p) = cp2 + O(p3) because the code can correct any single qubit error.
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Figure 11. (a) shows the average number of EC rounds before failure of an encoded qubit in the surface-17 code,while (b) shows
the average number of EC rounds before failure of 8 encoded qubits in the small stellated dodecahedron code. Solid lines show
1/pL where pL is the logical failure rate (as a function of p) obtained for both the exRec circuit and the single EC unit circuit. The
data clearly show that the lifetime is lower bounded by 1/pL obtained from the exRec circuit and not a single EC unit.

In figure 10, plots illustrating the pseudo-threshold of the Surface-17 and the small stellated
dodecahedron code are shown. In figure 11, the circular dots show the average number of EC
rounds before failure of encoded qubits for both a single qubit encoded in Surface-17 and 8
qubits encoded in the small stellated dodecahedron code (in the simulation, we decoded every
three rounds and propagated residual errors into the next EC unit). Unfortunately, the Surface-
17 code has a pseudo-threshold which is about 19 times larger than the dodecahedron code
((3.32 ± 0.01) × 10−5 compared to (1.77 ± 0.01) × 10−6). Note that the pseudo-threshold values
were obtained by the intersection between the curve p/10 (because we are considering a noise
model where idle qubits fail with probability p/10 and are concerned about quantum memories)
and the logical failure rate curve of the exRec. The differences in pseudo-thresholds are primarily
due to the larger number of locations in the fault-tolerant circuits of the dodecahedron code
compared to the surface-17 code circuits as well as the fact that both codes have the same distance.
In fact, just by counting the number of pairs of CNOT gates in an EC unit, one can get an indication
of the pseudo-threshold. For the small stellated dodecahedron code the number of CNOT gates
is 3 × 5 × 22 = 330 so that

(330
2

) = 54285, while for Surface-17 the number of CNOT gates in an
EC-unit is 3 × 4 × 8 = 96 so that

(96
2
) = 4560, in rough correspondence with the c’s in pL(p) = cp2

observed in figure 10.
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Figure 12. Comparison of eight logical qubits encoded in the surface-17 code, with a total logical failure rate given by 1 − (1 −
pL(p))8 where pL(p)≈ 3000p2, with eight logical qubits encoded in the dodecahedron code with pL(p)≈ 56488p2. It can be
seen that the surface-17 still outperforms the dodecahedron code because 8 × 3000� 56488.

Note that as the dodecahedron code encodes eight logical qubits, a fairer comparison would be
to compare the logical failure rate of the dodecahedron code with that of 8 qubits encoded in the
surface-17 code. In general, if the logical failure rate of an extended rectangle of the code is given
by pL(p), the logical failure rate of m copies of the code is given by p(m)

L (p) = 1 − (1 − pL(p))m =
mpL(p) + O((pL(p))2).

In figure 12, we compare the logical failure rate of eight qubits encoded in the dodecahedron
code with eight qubits encoded in the surface-17 code. It can be seen that the surface-17 code still
achieves a lower logical failure rate compared to the dodecahedron code.

7. Discussion
The fault-tolerance analysis for the small stellated dodecahedron code has shown the difficulty
of getting a block code with high pseudo-threshold when we include noise in the parity check
circuits themselves. The EC unit of this code is simply larger because many more checks need to
be measured and the pseudo-threshold is determined by pairs of malignant locations in this large
unit. By contrast, separate copies of the surface code, each with a much smaller EC unit benefit
from having ‘room for each logical operator’. One might expect that this problem becomes less
severe for larger hyperbolic codes which have shown lower but still good performance versus
surface codes for a phenomenological noise model [5].

One could consider how Steane EC can improve the performance of the small stellated
dodecahedron code: we expect that the qubit overhead will be larger (mainly due to the
requirement for preparing four logical |0〉 and four logical |+〉 ancillas) but the pseudo-threshold
would be quite better. The tetrahemihexahedron code [[12, 1, 3]] (table 1) with some weight-3
checks might be an interesting variation on the 3 × 4 rotated surface code (with dZ = 3, dX = 4).

Lastly, we also tried to use only four of the eight logical qubits of the small stellated
dodecahedron code for encoding logical information in order to see if significant improvements
in the pseudo-threshold could be obtained. However, our numerical simulations showed that, for
various choices of the logical qubits, the pseudo-threshold improved by less than a factor of two.
The primary reason is that, in most cases where a failure occurred, several logical qubits were
afflicted.
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A goal for future work would be to compare the performance of the small stellated
dodecahedron code with the surface code for a physically motivated noise model in an
optically linked ion-trap architecture [30] or an optically linked NV-centre in diamond
architecture [31].
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Appendix A. Colouring and parity check circuits for the small stellated
dodecahedron code

1:
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Figure 13. A colouring with 10 colours, see a corresponding schedule in figure 14.
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Figure 14. The parity check circuit for one EC round for the small stellated dodecahedron code involving 11 ancilla qubits starting
in |+〉 for the X-checkmeasurement and 11 ancilla qubits in |0〉 for the Z-checkmeasurement. The parity checkmeasurements
are accomplished in 10 rounds (separated by red vertical lines), corresponding to a graph colouring with 10 colours.
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