4,480 research outputs found

    LabelSens: enabling real-time sensor data labelling at the point of collection using an artificial intelligence-based approach

    Get PDF
    In recent years, machine learning has developed rapidly, enabling the development of applications with high levels of recognition accuracy relating to the use of speech and images. However, other types of data to which these models can be applied have not yet been explored as thoroughly. Labelling is an indispensable stage of data pre-processing that can be particularly challenging, especially when applied to single or multi-model real-time sensor data collection approaches. Currently, real-time sensor data labelling is an unwieldy process, with a limited range of tools available and poor performance characteristics, which can lead to the performance of the machine learning models being compromised. In this paper, we introduce new techniques for labelling at the point of collection coupled with a pilot study and a systematic performance comparison of two popular types of deep neural networks running on five custom built devices and a comparative mobile app (68.5-89% accuracy within-device GRU model, 92.8% highest LSTM model accuracy). These devices are designed to enable real-time labelling with various buttons, slide potentiometer and force sensors. This exploratory work illustrates several key features that inform the design of data collection tools that can help researchers select and apply appropriate labelling techniques to their work. We also identify common bottlenecks in each architecture and provide field tested guidelines to assist in building adaptive, high-performance edge solutions

    Licensed control does not reduce local Cormorant Phalacrocorax carbo population size in winter

    Get PDF
    Cormorants Phalacrocorax carbo have increased on European freshwaters, creating conflicts with fishing interests. As a result, control measures have been implemented in several countries, although their effect on the English population has yet to be determined. Wetland Bird Survey data was used to derive population growth rates (PGR) of non-coastal Cormorant populations in England. PGR was analysed in relation to control intensity at different scales (5- to 30-km radius) from 2001 to 2009 in order to determine (1) the extent to which control intensity (proportion of the local population shot per winter) was associated with site-level population change, and (2) whether potential effects of control intensity were evident on Special Protection Areas (SPAs). There were no clear differences in PGR when comparing sites which had experienced control versus sites where control had never been carried out. The few significant relationships between control intensity and Cormorant PGR detected were mostly positive, i.e. population growth was associated with higher control intensity. Control intensity was not related to Cormorant numbers in SPAs. Positive associations with control may arise because control is reactive, or because non-lethal effects cause greater dispersal of Cormorants. These results provide no evidence that Cormorant removal at local scales is having an effect on longer term (i.e. year-to-year) population size at a site level. They also suggest that control measures have not affected national population trends, although a better understanding of site use and movements of individual Cormorants needs to be developed at smaller scales (including those due to disturbance caused by control measures) to more fully understand processes at larger scales. Further research is also needed into the extent to which lethal and non-lethal effects of control on Cormorants are having the desired impact on predation rates of fish, and so help resolve the conflict between Cormorants and fisheries.</p

    The role of plasma membrane STIM1 and Ca2+entry in platelet aggregation. STIM1 binds to novel proteins in human platelets

    Get PDF
    Ca(2+) elevation is essential to platelet activation. STIM1 senses Ca(2+) in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca(2+) entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca(2+) entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca(2+) entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca(2+)-sensing role of STIM1 is served by the protein in the ER
    corecore