110 research outputs found

    HotSpot Wizard 3.0: Automated design of site-specific mutations and smart libraries

    Get PDF
    HotSpot Wizard is an interactive web server for prediction of amino acid residues suitable for mutagenesis and construction of libraries of mutants with modified activity, specificity or stability [1]. Positions suitable for mutagenesis are evaluated based on protein structure using a combination of structural, functional and evolutionary information obtained from 7 internet databases and 22 computational tools [2]. The application was designed with an emphasis on an easy usage without the necessity of advanced knowledge of the studied system. This is the reason for the setting of all default values of the parameters based on the extensive analysis to appropriately represent a wide spectrum of input data. Four different strategies are automatically evaluated for every protein structure. Analysis of the results is being run directly in the web interface, which provides user-friendly visualization tool. Moreover, HotSpot Wizard provides a module for the design of a construction of protein mutant library with the support of an automatic detection of suitable target amino acids and corresponding degenerative codons. There are several new features for the version 3.0 to be released early 2018. Stability of single-point or multiple-point mutant can be predicted using the Rosetta scoring function [3]. Users can newly enter also protein sequence as the input for calculation. Then searching for structures or models in the databases of experimental structures or depositories of homology models is performed. The users can also run homology modelling using the programs Modeller [4] and I-Tasser [5]. The current version of the application is freely available for academic users at http://loschmidt.chemi.muni.cz/hotspotwizard. 1. Pavelka, A., Chovancova, E., Damborsky, J., 2009: HotSpot Wizard: a Web Server for Identification of Hot Spots in Protein Engineering. Nucleic Acids Research 37: W376-W383. 2. Bendl, J., Stourac, J., Sebestova, E., Vavra, O., Musil, M., Brezovsky, J., Damborsky, J., 2016: HotSpot Wizard 2: Automated Design of Site-Specific Mutations and Smart Libraries in Protein Engineering. Nucleic Acids Research 44: W479-W487. 3. Kellogg, E.H., Leaver-Fay, A., Baker, D., 2011: Role of Conformational Sampling in Computing Mutation-induced Changes in Protein Structure and Stability. Proteins 79: 830-838. 4. Sali, A., Blundell, T.L., 1993: Comparative Protein Modelling by Satisfaction of Spatial Restraints. Journal of Molecular Biology 234: 779-815. 5. Zhang, Y., 2008: I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinformatics 9: 40

    FireProt: Web server for automated design of thermostable proteins

    Get PDF
    Stable proteins are used in numerous biomedical and biotechnological applications. Unfortunately, naturally occurring proteins cannot usually withstand the harsh industrial environment, since they are mostly evolved to function at mild conditions. Therefore, there is a continuous interest in increasing protein stability to enhance their industrial potential. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. A much higher degree of stabilization can be achieved by the construction of the multiple-point mutants. Here, we present the FireProt method [1] and the web server [2] for the automated design of multiple-point mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen bioinformatics tools, including several force field calculations. Highly reliable designs of the thermostable proteins are constructed by two distinct protein engineering strategies, based on the energy and evolution approaches and the multiple-point mutants are checked for the potentially antagonistic effects in the designed protein structure. Furthermore, time demands of the FireProt method are radically decreased by the utilization of the smart knowledge-based filters, protocol optimization, and effective parallelization. The server is complemented with an interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable proteins. The server is freely available at http://loschmidt.chemi.muni.cz/fireprot. 1. Bednar, D., Beerens, K., Sebestova, E., Bendl, J., Khare, S., Chaloupkova, R., Prokop, Z., Brezovsky, J., Baker, D., Damborsky, J., 2015: FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLOS Computational Biology 11: e1004556. 2. Musil, M., Stourac, J., Bendl, J., Brezovsky, J., Prokop, Z., Zendulka, J., Martinek, T., Bednar, D., Damborsky, J., 2017, FireProt: Web Server for Automated Design of Thermostable Proteins, Nucleic Acids Research, in press, doi: 10.1093/nar/gkx285

    Solo living in the process of transitioning to adulthood in Europe: The role of socioeconomic background

    Get PDF
    Background: In recent decades, patterns of transition to adulthood have undergone substantial changes, including an increase in people living solo after leaving the parental home. However, the extent to which solo living after leaving the parental home is a transitory state, quickly followed by union formation, or a relatively long-term state in the pathways to adulthood, and how long-term solo living is socially stratified are all questions that remain unanswered. Objective: To fill this gap, this study focuses on home-leaving pathways that have unfolded over a 5-year period after leaving home. It explores the association between socioeconomic background (parental education) and the long-term, solo-living, home-leaving pathways of young men and women across 29 European countries. Methods: Using European Social Survey Round 9 (2018) data, this study applies a competing trajectory analysis, which combines sequence analysis to identify home-leaving patterns with event history analysis, in order to analyse their association with parental education. Results: The occurrence of solo-living pathways varies considerably across Europe: both short-term and long-term solo-living pathways are the highest in Northern Europe. Long-term solo-living pathways are associated with being in education and with high levels of individual and parental education. The effect of parental education does not differ systematically across European countries and does not differ between genders. Contribution: This study contributes to the understanding of the social stratification of the transition to adulthood across European countries by differentiating between transitory and longer-term solo-living, home-leaving pathways

    Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family

    Get PDF
    Engineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases. Precisely, we transplanted a nine-residue long extension of L9 loop and alpha 4 helix from DbjA into the corresponding site of DbeA. Biophysical characterization showed that this fragment transplantation did not affect the overall protein fold or oligomeric state, but lowered protein stability (Delta T-m = -5 to 6 degrees C). Interestingly, the crystal structure of DbeA mutant revealed the unique structural features of enzyme access tunnels, which are known determinants of catalytic properties for this enzyme family. Biochemical data confirmed that insertion increased activity of DbeA with various halogenated substrates and altered its enantioselectivity with several linear beta-bromoalkanes. Our findings support a protein engineering strategy employing surface loop-helix transplantation for construction of novel protein catalysts with modified catalytic properties

    Engineering of haloalkane dehalogenase enantioselectivity towards βbromoalkanes: Open-solvated versus occluded-desolvated active sites

    Get PDF
    Enzymatic catalysis is widely used for preparing optically pure chemicals. Natural catalysts have to be often optimized to exhibit sufficient enantioselectivity towards industrially attractive non-natural substrates. Understanding the molecular basis of enzyme–substrate interactions involved in enantiodiscrimination is essential for rational design of selective catalysts. Haloalkane dehalogenases (EC 3.8.1.5) can convert a broad range of halogenated aliphatic compounds to their corresponding alcohols via SN2 mechanism [1]. The very first haloalkane dehalogenase exhibiting high enantioselectivity towards β-brominated alkanes (E-values of up to 174) was DbjA from Bradyrhizobium japonicum USDA110 [2]. This enzyme has a wide open solvent-accessible active site and its enantioselectivity towards β-brominated alkanes is modulated by a surface loop unique to DbjA [2]. Assuming that the active site geometry is crucial for substrate recognition, it was proposed that DbjA’s enantioselectivity could be transferred to closely related, but non-selective DhaA from Rhodococcus rhodochrous NCIMB13064 [1] by active site transplantation [3]. The unique loop fragment from DbjA together with additional 8-point substitutions was inserted to DhaA. Although the crystal structure of resulting variant DhaA12 exhibited identical geometry of the active site and the access tunnel as DbjA, it did not reach identical level of hydration and flexibility and lacked enantioselectivity towards β-bromoalkanes (E-value = 18) [3]. Interestingly, the variant DhaA31 constructed independently with a goal to enhance enzyme activity towards anthropogenic compound 1,2,3-trichlopropane [4], exhibited high enantioselectivity towards 2-bromopentane (E-value = 179) [5] as DbjA (E-value = 174) [2, 3]. DhaA31 contains five mutations, I135F, C176Y, V245F, L246I and Y273F, located in a main and a slot tunnel. Four of five mutations are large and aromatic residues narrowing two access tunnels and occluding the enzyme active site [4]. The level of DhaA31 active site hydration, so important for DbjA’s enantioselectivity [2, 3] is low, suggesting a different structural basis of enantioselectivity towards 2-bromopentane. A systematic study on the molecular basis of enantioselectivity in DbjA, DhaA, and DhaA31 using thermodynamic and kinetic analyses, site-directed mutagenesis, and molecular modeling was carried out. DhaA31 enantioselectivity arises from the hydrophobic substrate’s interactions with the occluded and desolvated active site [5], while DbjA enantioselectivity results from water-mediated interactions of 2-bromopentane with the active site’s hydrophobic wall [2]. Our data imply that enantioselectivity of haloalkane dehalogenases can be achieved by both occluded-desolvated active site and open-solvated active site. The engineering of “DbjA-like” enantioselectivity by modification of the active site hydration remains challenging. References: 1. Koudelakova, T., et al. 2013. Biotechnol. J. 8: 32–45. Prokop, Z., et al. 2010. Angew. Chem. Int. Ed., 49: 6111-6115. Sykora, J., et al. 2014. Nat. Chem. Biol., 10: 428-430. Pavlova, M., et al. 2009. Nat. Chem. Biol., 5: 727-733. Liskova, V., et al. 2017. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201611193

    The Physiological Role of Abscisic Acid in Eliciting Turion Morphogenesis

    Full text link

    Description of Transport Tunnel in Haloalkane Dehalogenase Variant LinB D147C+L177C from Sphingobium japonicum

    Get PDF
    The activity of enzymes with active sites buried inside their protein core highly depends on the efficient transport of substrates and products between the active site and the bulk solvent. The engineering of access tunnels in order to increase or decrease catalytic activity and specificity in a rational way is a challenging task. Here, we describe a combined experimental and computational approach to characterize the structural basis of altered activity in the haloalkane dehalogenase LinB D147C+L177C variant. While the overall protein fold is similar to the wild type enzyme and the other LinB variants, the access tunnels have been altered by introduced cysteines that were expected to form a disulfide bond. Surprisingly, the mutations have allowed several conformations of the amino acid chain in their vicinity, interfering with the structural analysis of the mutant by X-ray crystallography. The duration required for the growing of protein crystals changed from days to 1.5 years by introducing the substitutions. The haloalkane dehalogenase LinB D147C+L177C variant crystal structure was solved to 1.15 angstrom resolution, characterized and deposited to Protein Data Bank under PDB ID 6s06

    CAVERDOCK: A new tool for analysis of ligand binding and unbinding based on molecular docking

    Get PDF
    Understanding the protein-ligand interactions is crucial for engineering improved catalysts. The interaction of a protein and a ligand molecule often takes place in enzymes active site. Such functional sites may be buried inside the protein core, and therefore a transport of a ligand from outside environment to the protein inside needs to be understood. Here we present the CaverDock [1], implementing a novel method for analysis of these important transport processes. Our method is based on a modified molecular docking algorithm. It iteratively places the ligand along the tunnel in such a way that the ligand movement is contiguous and its energy is minimized. The output of the calculation is ligand trajectory and energy profile of transport process. CaverDock uses a modified version of the program AutoDock Vina [2] for molecular docking and implements a parallel heuristic algorithm to search the space of possible trajectories. Our method lies in between of geometrical approaches and molecular dynamics simulations. Contrary to geometrical methods, it provides an evaluation of chemical forces. However, it is not as computationally demanding as the methods based on molecular dynamics. The typical input of CaverDock requires setup for molecular docking and tunnel geometry obtained from Caver [3]. Typical computational time is in dozens of minutes at a single node, allowing virtual screening of a large pool of molecules. We demonstrate CaverDock usability by comparison of a ligand trajectory in different tunnels of wild type and engineered proteins; and computation of energetic profiles for a large set of substrates and inhibitors. CaverDock is available from the web site http://www.caver.cz. 1. Vavra, O., Filipovic, J., Plhak, J., Bednar, D., Marques, S., Brezovsky, J., Matyska, L., Damborsky, J., CAVERDOCK: A New Tool for Analysis of Ligand Binding and Unbinding Based on Molecular Docking. PLOS Computational Biology (submitted). 2. Trott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31: 455-461, 2010. 3. Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., Damborsky, J., 2012: CAVER 3.0: A Tool for Analysis of Transport Pathways in Dynamic Protein Structures. PLOS Computational Biology 8: e1002708
    corecore