56 research outputs found

    Deficiency of histone variant macroH2A1.1 is associated with sexually dimorphic obesity in mice

    Get PDF
    Obesity has a major socio-economic health impact. There are profound sex differences in adipose tissue deposition and obesity-related conditions. The underlying mechanisms driving sexual dimorphism in obesity and its associated metabolic disorders remain unclear. Histone variant macroH2A1.1 is a candidate epigenetic mechanism linking environmental and dietary factors to obesity. Here, we used a mouse model genetically depleted of macroH2A1.1 to investigate its potential epigenetic role in sex dimorphic obesity, metabolic disturbances and gut dysbiosis. Whole body macroH2A1 knockout (KO) mice, generated with the Cre/loxP technology, and their control littermates were fed a high fat diet containing 60% of energy derived from fat. The diet was administered for three months starting from 10 to 12 weeks of age. We evaluated the progression in body weight, the food intake, and the tolerance to glucose by means of a glucose tolerance test. Gut microbiota composition, visceral adipose and liver tissue morphology were assessed. In addition, adipogenic gene expression patterns were evaluated in the visceral adipose tissue. Female KO mice for macroH2A1.1 had a more pronounced weight gain induced by high fat diet compared to their littermates, while the increase in body weight in male mice was similar in the two genotypes. Food intake was generally increased upon KO and decreased by high fat diet in both sexes, with the exception of KO females fed a high fat diet that displayed the same food intake of their littermates. In glucose tolerance tests, glucose levels were significantly elevated upon high fat diet in female KO compared to a standard diet, while this effect was absent in male KO. There were no differences in hepatic histology. Upon a high fat diet, in female adipocyte cross-sectional area was larger in KO compared to littermates: activation of proadipogenic genes (ACACB, AGT, ANGPT2, FASN, RETN, SLC2A4) and downregulation of antiadipogenic genes (AXIN1, E2F1, EGR2, JUN, SIRT1, SIRT2, UCP1, CCND1, CDKN1A, CDKN1B, EGR2) was detected. Gut microbiota profiling showed increase in Firmicutes and a decrease in Bacteroidetes in females, but not males, macroH2A1.1 KO mice. MacroH2A1.1 KO mice display sexual dimorphism in high fat diet-induced obesity and in gut dysbiosis, and may represent a useful model to investigate epigenetic and metabolic differences associated to the development of obesity-associated pathological conditions in males and females

    Hyperthymic affective temperament and hypertension are independent determinants of serum brain-derived neurotrophic factor level

    Get PDF
    BACKGROUND: Brain-derived neurotrophic factor (BDNF) has neuroprotective, proangiogenic and myogenic effects and, therefore, possibly acts as a psychosomatic mediator. Here, we measured serum BDNF (seBDNF) level in hypertensive patients (HT) and healthy controls (CONT) and its relation to affective temperaments, depression and anxiety scales, and arterial stiffness parameters. METHODS: In this cross-sectional study, affective temperaments, anxiety, and depression were studied with questionnaires (TEMPS-A, HAM-A, and BDI, respectively). SeBDNF level and routine laboratory parameters were measured as well. Arterial stiffness was evaluated with a tonometric method. RESULTS: Allover, 151 HT, and 32 CONT subjects were involved in the study. SeBDNF level was significantly higher in HT compared to CONT (24880 +/- 8279 vs 21202.6 +/- 6045.5 pg/mL, p < 0.05). In the final model of regression analysis, hyperthymic temperament score (Beta = 405.8, p = 0.004) and the presence of hypertension (Beta = 6121.2, p = 0.001) were independent determinants of seBDNF. In interaction analysis, it was found that in HT, a unit increase in hyperthymic score was associated with a 533.3 (95 %CI 241.3-825.3) pg/mL higher seBDNF. This interaction was missing in CONT. CONCLUSIONS: Our results suggest a complex psychosomatic involvement of BDNF in the pathophysiology of hypertension, where hyperthymic affective temperament may have a protective role. BDNF is not likely to have an effect on large arteries

    Serum brain-derived neurotrophic factor: Determinants and relationship with depressive symptoms in a community population of middle-aged and elderly people

    Get PDF
    OBJECTIVES: Brain-derived neurotrophic factor (BDNF) is involved in major depressive disorder and neurodegenerative diseases. Clinical studies, showing decreased serum BDNF levels, are difficult to interpret due to limited knowledge of potential confounders and mixed results for age and sex effects. We explored potential determinants of serum BDNF levels in a community sample of 1230 subjects. METHODS: Multiple linear regression analyses with serum BDNF level as the dependent variable were conducted to explore the effect of four categories of potential BDNF determinants (sampling characteristics, sociodemographic variables, lifestyle factors and somatic diseases) and of self-reported depressive symptoms (Beck's Depression Inventory (BDI). RESULTS: Our results show that BDNF levels decline with age in women, whereas in men levels remain stable. Moreover, after controlling for age and gender, the assays still showed lower serum BDNF levels with higher BDI sum scores. Effects remained significant after correction for two main confounders (time of sampling and smoking), suggesting that they serve as molecular trait factors independent of lifestyle factors. CONCLUSIONS: Given the age-sex interaction on serum BDNF levels and the known association between BDNF and gonadal hormones, research is warranted to delineate the effects of the latter interaction on the risk of psychiatric and neurodegenerative diseases

    De-Novo Identification of PPARγ/RXR Binding Sites and Direct Targets during Adipogenesis

    Get PDF
    BACKGROUND: The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARgamma have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARgamma binding sites, we applied the pair end-tagging technology (ChIP-PET) to map PPARgamma binding sites in 3T3-L1 preadipocyte cells. METHODOLOGY/PRINCIPAL FINDINGS: Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARgamma and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARgamma and RXR and that they are functionally capable of driving PPARgamma specific transcription. Our results strongly indicate that PPARgamma is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARgamma/RXR association is enriched within the proximity of the 5' region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARgamma as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down-regulated genes, suggesting the primordial function of PPARgamma/RXR is in the induction of genes. Our functional validations resulted in identifying novel PPARgamma direct targets that have not been previously reported to promote adipogenic differentiation. CONCLUSIONS/SIGNIFICANCE: We have identified in a genome-wide manner the binding sites of PPARgamma and RXR during the course of adipogenic differentiation in 3T3L1 cells, and provide an important resource for the study of PPARgamma function in the context of adipocyte differentiation

    Serum Neurotrophin Profile in Systemic Sclerosis

    Get PDF
    International audienceBACKGROUND: Neurotrophins (NTs) are able to activate lymphocytes and fibroblasts; they can modulate angiogenesis and sympathic vascular function. Thus, they can be implicated in the three pathogenic processes of systemic sclerosis (SSc). The aims of this study are to determine blood levels of Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT-3) in SSc and to correlate them with clinical and biological data.METHODS: Serum samples were obtained from 55 SSc patients and 32 control subjects to measure NTs levels by ELISA and to determine their relationships with SSc profiles. FINDINGS: Serum NGF levels were higher in SSc patients (288.26 ± 170.34 pg/mL) than in control subjects (170.34 ± 50.8 pg/mL, p<0.001) and correlated with gammaglobulins levels and the presence of both anti-cardiolipin and anti-Scl-70 antibodies (p<0.05). In contrast, BDNF levels were lower in SSc patients than in controls (1121.9 ± 158.1 vs 1372.9 ± 190.9 pg/mL, p<0.0001), especially in pulmonary arterial hypertension and diffuse SSc as compared to limited forms (all p<0.05). NT-3 levels were similar in SSc and in the control group (2657.2 ± 2296 vs 2959.3 ± 2555 pg/mL, NS). BDNF levels correlated negatively with increased NGF levels in the SSc group (and not in controls). CONCLUSION: Low BDNF serum levels were not previously documented in SSc, particularly in the diffuse SSc subset and in patients with pulmonary hypertension or anti-Scl-70 antibodies. The negative correlation between NGF and BDNF levels observed in SSc and not in healthy controls could be implicated in sympathic vascular dysfunction in SSc
    corecore