60 research outputs found

    Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation

    Get PDF
    SummaryCockayne syndrome (CS) is a severe neurodevelopmental disorder characterized by growth abnormalities, premature aging, and photosensitivity. Mutation of Cockayne syndrome B (CSB) affects neuronal gene expression and differentiation, so we attempted to bypass its function by expressing downstream target genes. Intriguingly, ectopic expression of Synaptotagmin 9 (SYT9), a key component of the machinery controlling neurotrophin release, bypasses the need for CSB in neuritogenesis. Importantly, brain-derived neurotrophic factor (BDNF), a neurotrophin implicated in neuronal differentiation and synaptic modulation, and pharmacological mimics such as 7,8-dihydroxyflavone and amitriptyline can compensate for CSB deficiency in cell models of neuronal differentiation as well. SYT9 and BDNF are downregulated in CS patient brain tissue, further indicating that sub-optimal neurotrophin signaling underlies neurological defects in CS. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for pharmacological intervention, these data suggest an important role for SYT9 in neuronal differentiation

    Dendritic cell lineage potential in human early hematopoietic progenitors

    Get PDF
    Conventional dendritic cells (cDCs) are thought to descend from a DC precursor downstream of the common myeloid progenitor (CMP). However, a mouse lymphoid-primed multipotent progenitor has been shown to generate cDCs following a DCspecific developmental pathway independent of monocyte and granulocyte poiesis. Similarly, here we show that, in humans, a large fraction of multipotent lymphoid early progenitors (MLPs) gives rise to cDCs, in particular the subset known as cDC1, identified by co-expression of DNGR-1 (CLEC9A) and CD141 (BDCA-3). Single-cell analysis indicates that over one-third of MLPs have the potential to efficiently generate cDCs. cDC1s generated from CMPs or MLPs do not exhibit differences in transcriptome or phenotype. These results demonstrate an early imprinting of the cDC lineage in human hematopoiesis and highlight the plasticity of developmental pathways giving rise to human DCs

    Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak

    Get PDF
    The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease

    Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance.

    Get PDF
    Unrelenting environmental challenges to the gut epithelium place particular demands on the local immune system. In this context, intestinal intraepithelial lymphocytes (IEL) compose a large, highly conserved T cell compartment, hypothesized to provide a first line of defence via cytolysis of dysregulated intestinal epithelial cells (IEC) and cytokine-mediated re-growth of healthy IEC. Here we show that one of the most conspicuous impacts of activated IEL on IEC is the functional upregulation of antiviral interferon (IFN)-responsive genes, mediated by the collective actions of IFNs with other cytokines. Indeed, IEL activation in vivo rapidly provoked type I/III IFN receptor-dependent upregulation of IFN-responsive genes in the villus epithelium. Consistent with this, activated IEL mediators protected cells against virus infection in vitro, and pre-activation of IEL in vivo profoundly limited norovirus infection. Hence, intraepithelial T cell activation offers an overt means to promote the innate antiviral potential of the intestinal epithelium.Support was provided by the Wellcome Trust (A.C.H., J.L.H., G.R) and Cancer Research UK (A.C.H.), Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust (L.A.-D.; A.C.H.); Marie Curie and EMBO fellowships (M.S.).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150519/ncomms8090/full/ncomms8090.html

    c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells

    Get PDF
    Mesenchymal progenitor cells (MPCs) have been hypothesized as cells of origin for sarcomas, and c-Fos transcription factor has been showed to act as an oncogene in bone tumors. In this study, we show c-Fos is present in most sarcomas with chondral phenotype, while multiple other genes are related to c-Fos expression pattern. To further define the role of c-Fos in sarcomagenesis, we expressed it in primary human MPCs (hMPCs), immortalized hMPCs and transformed murine MPCs (mMPCs). In immortalized hMPCs, c-Fos expression generated morphological changes, reduced mobility capacity and impaired adipogenic- and osteogenic-differentiation potentials. Remarkably, immortalized hMPCs or mMPCs expressing c-Fos generated tumors harboring a chondrogenic phenotype and morphology. Thus, here we show that c-Fos protein has a key role in sarcomas and that c-Fos expression in immortalized MPCs yields cell transformation and chondrogenic tumor formation.This work was supported by grants from the Fondo de Investigaciones Sanitarias (FIS: PI11/00377 to J.G.-C.; and RTICC: RD12/0036/0027 to J.G-C, RD12/0036/0020 to S.M.) and the Madrid Regional Government (CellCAM; P2010/BMD-2420 to J.G.-C) in Spain. A.A. was supported by Juan de la Cierva program of the Spanish Plan Nacional (MINECO) and Sara Borrell program of the ISCIII/FEDER. A.Al. was supported by the “Miguel Servet” program of the ISCIII/FEDER. We gratefully acknowledge support from Asociación Pablo Ugarte (CIF G86121019) and AFANION (CIF G02223733). The experiments were approved by the appropriate committees.S

    A Strong B-cell Response Is Part of the Immune Landscape in Human High-Grade Serous Ovarian Metastases

    Get PDF
    In high-grade serous ovarian cancer (HGSOC), higher densities of both B cells and the CD8 + T-cell infiltrate were associated with a better prognosis. However, the precise role of B cells in the antitumor response remains unknown. As peritoneal metastases are often responsible for relapse, our aim was to characterize the role of B cells in the antitumor immune response in HGSOC metastases. Unmatched pre and post-chemotherapy HGSOC metastases were studied. B-cell localization was assessed by immunostaining. Their cytokines and chemokines were measured by a multiplex assay, and their phenotype was assessed by flow cytometry. Further in vitro and in vivo assays highlighted the role of B cells and plasma cell IgGs in the development of cytotoxic responses and dendritic cell activation. B cells mainly infiltrated lymphoid structures in the stroma of HGSOC metastases. There was a strong B-cell memory response directed at a restricted repertoire of antigens and production of tumor-specific IgGs by plasma cells. These responses were enhanced by chemotherapy. Interestingly, transcript levels of CD20 correlated with markers of immune cytolytic responses and immune complexes with tumor-derived IgGs stimulated the expression of the costimulatory molecule CD86 on antigen-presenting cells. A positive role for B cells in the antitumor response was also supported by B-cell depletion in a syngeneic mouse model of peritoneal metastasis. Our data showed that B cells infiltrating HGSOC omental metastases support the development of an antitumor response. Clin Cancer Res; 1-13. ©2016 AACR

    DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential

    Get PDF
    Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential

    GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c+MHCII+ Macrophages and Dendritic Cells

    Get PDF
    SummaryDendritic cells (DCs) are key players in the immune system. Much of their biology has been elucidated via culture systems in which hematopoietic precursors differentiate into DCs under the aegis of cytokines. A widely used protocol involves the culture of murine bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate BM-derived DCs (BMDCs). BMDCs express CD11c and MHC class II (MHCII) molecules and share with DCs isolated from tissues the ability to present exogenous antigens to T cells and to respond to microbial stimuli by undergoing maturation. We demonstrate that CD11c+MHCII+ BMDCs are in fact a heterogeneous group of cells that comprises conventional DCs and monocyte-derived macrophages. DCs and macrophages in GM-CSF cultures both undergo maturation upon stimulation with lipopolysaccharide but respond differentially to the stimulus and remain separable entities. These results have important implications for the interpretation of a vast array of data obtained with DC culture systems
    • 

    corecore