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Abstract 

We have profiled, for the first time, an evolving human metastatic microenvironment, 

measuring gene expression, matrisome proteomics, cytokine and chemokine levels, 

cellularity, ECM organization and biomechanical properties, all on the same sample. Using 

biopsies of high-grade serous ovarian cancer (HGSOC) metastases that ranged from minimal 

to extensive disease, we show how non-malignant cell densities and cytokine networks 

evolve with disease progression. Multivariate integration of the different components allowed 

us to define for the first time, gene and protein profiles that predict extent of disease and 

tissue stiffness, whilst also revealing the complexity and dynamic nature of matrisome 

remodeling during development of metastases. Although we studied a single metastatic site 

from one human malignancy, a pattern of expression of 22 matrisome genes distinguished 

patients with a shorter overall survival in ovarian and twelve other primary solid cancers, 

suggesting that there may be a common matrix response to human cancer. 

 

Keywords 

Tumor microenvironment, extracellular matrix, biomechanics, cytokines, tumor-infiltrating 

leukocytes, ovarian cancer, cancer-associated fibroblasts, data integration  

Significance 

Conducting multi-level analysis with data integration on biopsies with a range of disease 

involvement identifies important features of the evolving TME. The data suggest that despite 

the large spectrum of genomic alterations, some human malignancies may have a common 

and potentially targetable matrix response which influences the course of disease. (50 words)  
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Introduction 

Solid tumors consist of malignant cells surrounded and infiltrated by a variety of host cells 

that are recruited and ‘corrupted’ by the cancer, aiding its growth and spread (1,2). A 

dynamic network of soluble factors, cytokines, chemokines, growth factors and adhesion 

molecules drive the interactions between malignant and non-malignant cells to create this 

tumor microenvironment (TME) (3,4). The TME network stimulates extracellular matrix 

(ECM) remodeling, expansion of abnormal vascular and lymphatic networks and migration 

of cells into and out of the tumor mass (5,6). Solid tumors are also typically stiffer than the 

surrounding tissue due to aberrant ECM deposition and organization that has a major 

influence on cell and tissue mechanics (7,8). 

While the TME is of critical importance during initiation and spread of cancer, relatively 

little is known about its evolution or the relationship between the molecular mechanisms of 

disease progression and higher-order features such as the extent of disease, non-malignant 

cell density and tissue stiffness. Studies on molecular mechanisms of human cancer have 

mainly focused on large-scale genomic and transcriptomic analysis of primary tumors (9) and 

the immune cell landscape (1). Human cancer evolution is also now being studied in multiple 

metastatic sites e.g.(10,11) but mainly in terms of the genomics of the malignant cells. Also, 

most of these analyses focus on one stage of a cancer. 

Here, for the first time, we have used multi-layered TME profiling of a metastatic site, 

omental metastases of high-grade serous ovarian cancer (HGSOC), to identify molecular 

changes that predict the higher-order TME features. Our study differs from other genomic 

and transcriptomic studies in two important ways: first, we have integrated data from six 

different TME parameters from each metastatic sample studied and second, we have studied 

the evolution of metastases by including samples that vary in the extent of disease.  
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HGSOC is one of the most lethal of the peritoneal cancers: less than 30% of patients 

currently survive more than five years after diagnosis with little improvement in overall 

survival in the past 40 years (12). As poor prognosis is mainly due to early dissemination into 

the peritoneal cavity (12,13) and HGSOC metastases have a complex TME (14), there is a 

need for an integrated understanding of its different components (12). We chose to study the 

omental TME because it is the most frequent site for HGSOC metastases and is routinely 

resected during debulking surgery.  

Using samples ranging from minimal to extensive disease we conducted cellular, 

biomechanical and molecular analyses on each biopsy. Integration of the different 

components using multivariate analyses allowed us to define for the first time, gene and 

protein profiles that predicted extent of disease and tissue stiffness whilst also revealing how 

the ECM is remodeled during metastases development. Of particular interest was an ECM-

associated molecular signature, that we termed the matrix index, that predicted both extent of 

disease and tissue stiffness in our sample set. This novel signature distinguished patients with 

shorter overall survival not only in ovarian cancer, but also in twelve other cancer types 

irrespective of patient age, stage or response to primary treatment, suggesting a common 

matrix response to human primary and metastatic cancers. 
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Results 

Study Design 

We analysed six different parameters of omental biopsies from 36 HGSOC patients: the 

extent of disease, densities of non-malignant cells, tissue mechanics, cytokines, matrisome 

protein and RNA profiles (Figure 1A). The samples ranged from uninvolved or minimally-

diseased omentum to biopsies with extensive disease (Table S1, Figure 1B and Figure S1A).  

The extent of disease in each biopsy was measured by digital histopathology on haematoxylin 

and eosin (H&E) stained sections and was calculated as the percentage of tissue area 

occupied by malignant cells and stroma. We termed this the ‘disease score’. Remodeling of 

the omentum was extensive when malignant cells were present and the malignant cells 

comprised a minor proportion of the tissue (Figure 1B). In order to monitor for any 

significant changes in sample architecture during tissue processing for the different analyses 

we took serial sections for H&E staining. We did not observe any major changes in disease 

score between the different areas analyzed.  

The density of the major non-malignant cell populations was measured by 

immunohistochemistry (IHC) and digital histopathology in the same specimens. The 

biomechanical properties of the tissues were measured using a mechanical indentation 

methodology (15) that gave us the tissue modulus of each sample. 

Twenty-nine cytokine and chemokines were measured in protein lysates using an electro-

chemiluminescence assay (Table S2). For proteomic analysis of the same biopsies we 

focused on the ECM and associated molecules using a method that enriches whole tissue 

lysates for the matrisome protein compartment (16). Using this technique we detected 145 

proteins (Table S3). The term ‘matrisome’ is defined as the ensemble of all core ECM 

proteins (collagens, proteoglycans, glycoproteins) and associated molecules (the secretome, 

ECM-regulators and ECM-affiliated molecules) of tissue extracellular matrices (17). After 
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alignment and filtering, RNA sequencing identified 15,441 protein-coding genes (Table S4). 

We then used univariate analyses and a multivariate regression method – partial least squares 

(PLS) (18) – to model the relationships between these different components of the metastases 

(Figure 1C).  

 

The relationship between cell density and disease score  

Using a tissue microarray constructed from the biopsies we quantified the adipocytes, 

fibroblasts and leukocytes which were the major non-malignant components in the specimens 

and related this to disease score. The area occupied by adipocytes, the major cell type of the 

normal omentum, decreased with disease score (Figure 1B) and this was in part due to a 

reduction in the diameter of the adipocytes (Figure 2A) which may reflect research showing 

that adipocytes can provide energy for ovarian cancer cell growth (13). Using α-smooth 

muscle actin (-SMA) and α-fibroblast activation protein (α-FAP) as markers of cancer-

associated fibroblasts (CAFs) (19), we assessed the area of the tissue occupied by -SMA+ 

and α-FAP+ cells and found a strong positive correlation with disease score for both markers 

(Figure 2B, C).  

We then stained and counted six major leukocyte subtypes and plotted cell density against 

disease score. In all cases there was a significant positive correlation between leukocyte 

density and disease score (p<0.001) (Figure 2D, Figure S1B). Densities of T cells with the 

surface markers CD3, CD4, CD8 and CD45RO strongly correlated with each other (p<0.001, 

r>0.6) but CD68+ macrophage density only weakly correlated with the other leukocytes 

(p<0.05, r<0.5) (Figure 2E, Table S5).  

Therefore, as metastases developed in the omentum, the fatty tissue was replaced by a 

combination of fibroblasts, lymphocytes and macrophages. The cellular composition that we 

observed illustrates the changes from a normal omental tissue, primarily composed of 
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adipocytes with minimal immune cell infiltrate and little fibroblastic reaction, to heavily 

diseased tissues with profound tumor-associated inflammation and a large increase in all 

types of leukocytes and fibroblasts. However, whilst there was a general increase in stromal 

cell density across all of the markers we studied, we observed larger variance with high 

disease score samples for all immune cell counts. This is to be expected as it is already well-

documented that the TME of advanced HGSOC biopsies ranges from sparse to dense 

leukocyte infiltration.  

The immune cell densities significantly correlated with their corresponding immune gene 

expression signatures extracted from the associated RNAseq data for each sample (Table S6) 

and levels of the adipogenic transcription factor PPAR mRNA declined with disease score 

(Figure S1C). Thus, the cell density scores were validated by the gene transcription data. 

 

Leukocyte density and cytokine networks in the TME 

Next, we correlated leukocyte density against levels of 29 different cytokines and 

chemokines in protein lysates of the metastases. There were eight significant correlations 

(Figure 2F, Table S7), the strongest of which was, unexpectedly, an association between 

IL16, a chemoattractant and modulator of T cell function, and the density of CD3, CD45RO 

and CD8 cells. These correlations became stronger with the 10 samples with the highest 

disease score (Figure S1D). IHC revealed IL16 protein in both malignant and stromal areas, 

with a higher density in the former (Figure 2G). There was also a high positive correlation 

between global cell proliferation assessed by Ki67 and LTA, IL17A, IL15, CXCL10 (Figure 

2F).  

 As cytokine networks are major determinants of leukocyte density and phenotype in the 

TME (3,20), we asked if the cytokine proteins and genes we detected in the tissue lysates 

could inform us about the networks that regulate omental metastases. We constructed 
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heatmaps showing pairwise comparisons of cytokine protein and gene transcription levels 

(Figure 2H, Figure S1E, Tables S8 and S9). Overall the protein gene correlation was 30%, in 

line with other studies e.g. (21). The heatmaps show five significant co-expressions at both 

gene and protein level: IL6 with IL1A, IL1B, and IL8, CSF2 with IL8, and CCL4 with 

CCL3.  IL6 was of particular interest as we previously identified this as a major mediator of 

cytokine networks in ovarian cancer (20,22). Finally, we asked if levels of any of the 

cytokines and chemokines associated with disease score. There were weak but significant 

associations with disease score with IL12B, IL13, IL16, VEGF, CCLs 11, 26, and CXCL10.  

 

These results suggest that malignant cell-derived cytokine and chemokine networks in the 

omental metastases regulate leukocyte density and overall proliferative index. Unexpectedly, 

we identified the CD4 ligand IL16 as a potential major mediator of the leukocyte infiltrate. It 

is interesting that increased tissue and serum levels of IL16 have been reported during tumor 

development in laying hen models of ovarian cancer and in ovarian cancer patients (23).  

 

These cytokine and cellularity data confirm and extend previous research on the ovarian 

cancer and other tumor microenvironments and we believe validate our approach. Extensive 

study of another TME component, the matrisome, has recently become possible through 

proteomics methods that focus on these proteins (17). There is currently little information on 

how the matrisome evolves with disease progression. Therefore, our next aim was to study 

the ECM-associated proteins and genes, collectively termed the matrisome, in the same 

biopsies.  

 

How the matrisome changes with disease progression 
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Using our matrisome-focused proteomic technique (16) and the RNAseq data we 

quantitatively assessed matrisome proteins and genes. In terms of relative mass ratios, the 

major matrix proteins in samples with the lowest disease score were collagen 1, 6 and 3, the 

glycoprotein fibrillin, the ECM regulator alpha-2-macroprotein, and the basement membrane 

proteoglycans lumican and heparin sulphate proteoglycan-2. In contrast, biopsies with the 

highest disease score had an expansion of ECM-glycoproteins fibrinogen and fibronectin, as 

well as increases in proteoglycans, secreted factors, and affiliated proteins, (FDR <0.1) 

(Figure 3A).  

Extending the analysis to the entire sample set we found that as disease score increased levels 

of some matrisome proteins decreased and others increased. Comparing the relative mass 

ratio of all matrisome proteins with disease score, we found that 18 proteins decreased and 49 

proteins increased with disease progression (Figure 3B, Table S10).  After these univariate 

analyses, we used the multivariate regression PLS method to rank genes and proteins 

according to their influence on disease score, and a permutation-derived threshold was 

applied to determine those that were most strongly associated with disease score (24,25).  

Of these, 58 proteins ranked top in PLS modeling of disease score (r
2
 = 0.70), defining a 

matrisome protein signature of disease score (Figure 3C, Table S11).  

412 of the 764 matrisome genes detected in our transcriptomics dataset also predicted disease 

score (Table S12). The top 60 genes are shown in Figure 3D with 27 ECM-associated 

molecules predicting disease score at both the gene and protein level (Figure 3E, Figure 

S2A). We used IHC to detect four of these proteins, FN1, COMP, CTSB and COL11A1, in 

HGSOC omentum detecting all four within stromal regions (Figure 3F). As collagen 

organisation strongly influences cell behavior and tissue mechanics (26,27), we utilised two-

photon microscopy to visualise collagen fibres using second harmonic generation (SHG) 

label-free illumination (Figure 3G). In low disease score tissues collagen fibres were thin and 
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arranged mostly around the adipocytes. In high disease score tissues, there were denser arrays 

of long collagen bundles with an apparent micro-scale orientation preference. Collagen 

orientation correlated strongly with disease score (Figure 3G). It should be noted that Figure 

3A shows relative matrisome protein abundance as mass ratios whereas Figure 3G depicts the 

alignment of collagen in the tissues. While the amount of collagen does increase in diseased 

tissue, its relative abundance goes down as other matrisome proteins are induced as the tissue 

becomes more diseased. Representative images for COL1A1 IHC staining are shown in 

Figure S2B. 

 

Other biological processes associated with disease score 

We then analysed the RNAseq data to find other biological processes associated with disease 

score (Table S13). Significantly associated pathways included cell metabolism, adhesion, 

communication as well as ECM organization and immune response pathways (Figure S2C, 

Table S14). 

 

We have described here, for the first time, how the matrisome changes with disease 

progression. As some of the strongest correlations with disease score were found with these 

ECM-associated proteins and genes, and increased tissue stiffness has been linked with tumor 

progression (28,29), we next investigated how the changes in matrisome genes and proteins 

related to the biomechanical properties of the biopsies. 

 

Relationships between tissue modulus (stiffness) and disease score 

We used mechanical indentation (15) to determine tissue modulus (which describes material 

stiffness independent of sample size) and the stress-relaxation behavior of the samples. We 

measured disease score from histological sections of the area of the specimen that was 
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indented (Figure 4A, Figure S3). Biopsies with a high disease score displayed a non-linear 

loading response and greater stress relaxation while there was a relatively linear loading 

response in low disease score tissue (Figure 4B, Figure S3C, Table S15). Tissue modulus 

values in high disease score biopsies were one-two orders of magnitude higher than in low 

disease biopsies. There were significant positive correlations between tissue modulus and 

malignant cell area, the stromal area and disease score of each biopsy (Figure 4C, Figure 

S3D). Thus, there was a significant log relationship between tissue modulus and disease score 

in the evolving TME suggesting a close association of tissue stiffness with disease 

progression. 

 

The matrisome, tissue stiffness and disease score 

Using the PLS method, we identified 64 matrisome proteins, mainly glycoproteins, that 

accurately predicted tissue modulus (r
2
 = 0.69) (Figure 4D, Figure S4A, Table S16). We then 

used 764 matrisome genes detected by RNAseq and identified 405 that predicted tissue 

modulus (Figure 4E, Figure S4B, Table S17) of which 38 also featured as proteins in Figure 

4D. Thus, as with disease score, the tissue modulus could be predicted by a subset of ECM-

associated genes and proteins of the matrisome. 

We also modeled tissue modulus against the entire transcriptome of the metastases (Figure 

S4C, Table S18). Genes associated with cell metabolism, cell communication, wound 

healing, ECM organization, as well as development, correlated with tissue modulus (Figure 

S4D, Table S19). Figure 4F shows the PLS prediction plot and the top 50 genes from this 

signature. As expected there was a strong overlap with disease score-associated genes and 

proteins (74% and 75% respectively) and these were significantly associated with tissue 

modulus (Table S20). 
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Collectively, the experiments described above demonstrated the complexity and dynamic 

nature of matrisome evolution during development of HGSOC metastases and the close 

relationship between tissue stiffness and extent of disease. 

  

A subset of matrisome molecules models both disease score and tissue modulus and has 

prognostic significance in HGSOC 

We next asked how many matrisome genes and proteins significantly defined both disease 

score and tissue modulus in our sample set (Figure 5A, Table S21). Twenty-two molecules 

were highly significant across all of our analyses with a gene:protein concordance of 68% 

(Figure 5A, Figure S5A). Thirteen of the 22 proteins had documented protein:protein 

interactions (Figure 5B). Using the ChEA database (30) we found that the 22 genes shared a 

range of common transcription factors including RUNX2, STAT3, SMAD4, WT1, JUN and 

TP53. These reflect pathways associated with Wnt signalling pathway, inflammation and 

osteogenesis, whilst TP53 is of course the most frequently mutated gene in HGSOC, a major 

genetic driver of the disease (Figure S5B and Table S22). 

Using these 22 most significant molecules, we measured the ratio between the mean 

expression levels of the positively regulated genes and the mean expression levels of the 

negatively regulated genes. We termed this the matrix index because these molecules are all 

components of the matrisome (17). As would be expected, the matrix index of each sample 

significantly correlated with disease score and tissue modulus in our set of samples 

(p<0.0001) as would be expected (Figure 5C). There were also significant positive and 

negative correlations between matrix index and immune cell signatures in the corresponding 

RNAseq data (Figure 5D, Table S23), notably Treg and Th2 cell signatures, cell subtypes 

associated with tumor promotion and immune suppression (31) and a modest statistically 

significant relationship between disease score and entropy as a measure of clonal abundance 
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for T and B cells (Table S23).  These data suggest that matrix index molecules may influence 

expansion of specific infiltrating cell populations. In support of these findings, there were 

significant linear correlations between the matrix index and the data in Figure 2 in terms of 

CD4+ (pearson r=0.523, p=0.001) and FOXP3+(pearson r=0.52, p=0.001) cells but there was 

no correlation between matrix index and CD8+ cells (pearson r=0.29, p=0.094). 

 

Relevance of matrix index to other stages of HGSOC and prognosis  

As the matrix index positively correlated with disease score, tissue modulus and immune-

suppressive signatures in our sample set, we wondered if it would distinguish ovarian cancer 

patients with a poorer prognosis in transcriptomic data from untreated primary tumors. We 

extracted expression values from two publicly available HGSOC gene expression datasets 

and calculated the matrix index for each sample. The high and low matrix index groups were 

determined using a method described previously (32). High matrix index significantly 

correlated with shorter overall HGSOC patient survival in both the ICGC and TCGA gene 

expression datasets, as well as in our original sample set (Figure 5E, Figure S5B-E). To test 

that the clinical outcome association of the matrix index was not a random finding we 

conducted 200,000 simulations and found that the association was significantly above that 

expected from random signatures.  

In order to account for the higher relative abundance of tumor cells compared with stroma 

present in the TCGA ovarian cancer samples compared to our samples, we plotted the 

correlation between matrix index and % tumor cell or % stroma in each TCGA sample. In 

both cases we observed no association with matrix index (Figure S5F). Taken together with 

the immune cell correlations, this further suggests the matrix index is not only a measure of 

the tissue remodeling that accompanies HGSOC, but is also a measure of a matrisome 

composition that better supports tumor progression.  
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Interrogating the TCGA ovarian cancer dataset, we next evaluated the power of the matrix 

index against nine other well-known prognostic gene expression signatures in ovarian and 

other cancers, including signatures for stromal and immune responses (33-41). In terms of 

hazard-ratio scores, matrix index was in the top three after the 26-gene breast cancer stromal 

signature reported by Finak et al (41) and the 193-transcriptional signature from TCGA (9) 

(Figure 5F, left panel). However, using multivariate analysis, matrix index was the single 

significant predictor of ovarian cancer survival independently of age, stage, grade and 

treatment outcome (Figure 5F, right panel and Table S24).  

At the protein level, we used matrix index to examine the recently released TCGA/CPTAC 

ovarian cancer proteomics dataset.  Whilst the study was not focused on detecting ECM 

proteins, which requires matrisome protein enrichment prior to analysis, as described above, 

we found that there were 12 proteins from the matrix index with a significant association with 

survival (10 with p < 0.05 and a further 2 with p < 0.1).  

 

Matrix Index in other human cancers  

ECM remodeling is a common feature of many human cancers and significant desmoplasia 

and ECM deposition is found in other solid tumors. Since we hypothesize that the matrix 

index is a measure of a tumor-promoting matrisome in HGSOC, we wondered if it may also 

be a feature associated with poor outcome in other cancer types. We calculated matrix index 

values in 30 other publicly available gene expression datasets from epithelial, mesenchymal 

and haematologic malignancies analysing data from 9215 human cancer biopsies. High 

matrix index was an indicator of poor prognosis in epithelial and mesenchymal cancers but 

not in haematological cancers, melanoma and glioblastoma (Figure 6A and Figure S6A). 

Using univariate analysis, high matrix index predicted shorter overall patient survival in 15 

datasets representing 13 major cancer types (p < 0.05) (Figure S6B, Table S25). The range of 
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matrix index values across all these cancer databases had a median value close to 1.0 (Figure 

S6C). We believe this provides further evidence that the pattern of ECM-associated gene 

expression determined by the matrix index may be a common feature of human cancers. 

Remarkably, multivariate analysis showed that the prognostic value of the matrix index was 

independent of age, stage, grade and response to primary treatment in 15 of the datasets 

representing 13 major cancer types (p < 0.05) (Figure 6B).  

Using IHC, we confirmed the presence of four of the upregulated matrix index proteins FN1, 

COL11A1, CTSB, and COMP, in three tissue microarrays from triple negative breast cancer 

(TNBC), pancreatic ductal adenocarcinoma (PDAC), and diffuse large B-cell lymphoma 

(DLBCL) (Figure 6C). These cancers reflected the range of hazard ratios for high matrix 

index in Figure 6B. Digital microscopy analysis showed the highest staining level in TNBC 

(Figure 6D), in keeping with the matrix index score for this cancer (Figure S6C). FN1, 

COMP, and CTSB were present in stroma and fibroblastic cells of all tumors. COL11A1 was 

located within the malignant cells in all biopsies. FN1 was also found in malignant PDAC 

cells and in immune cells in DLBCL. CTSB was located in macrophages in TNBC and 

PDAC, and tumor cells in DLBCL.  

 

Data resource 

All data in this paper are provided in a mine-able web-based resource 

http://www.canbuild.org.uk currently under construction. Users are able to download, 

visualize, analyse and integrate across datasets.  

 

Discussion 

In this paper we have profiled, for the first time, an evolving human metastatic 

microenvironment, using analysis that includes gene expression, matrix proteomics, 
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cytokine/chemokine expression, ECM organization and biomechanical properties, all 

performed on the same sample. This gives a unique and informative snapshot of the evolving 

metastatic state of one type of ovarian cancer. Integration of the most significant features of 

this microenvironment may have identified a matrix response that is conserved in other 

cancers of epithelial or mesenchymal origins.  

Our study has also shown that conducting multi-level analysis with data integration on well-

characterized cancer biopsies with a range of disease involvement, and multiple analyses per 

sample, can identify important features representative of the evolving TME. This approach is 

complementary to ‘omic’ molecular cancer datasets that have larger numbers of samples. The 

data presented here provide a unique resource regarding molecular, cellular, and mechanical 

regulation in the tumor microenvironment and a template for bioengineers who are building 

complex tumor microenvironment models. 

Molecular genetics has revealed great intra- and inter-tumor heterogeneity. It is now accepted 

that malignant cell clones undergo Darwinian evolution, resulting in a high level of molecular 

heterogeneity. In contrast, this study shows that the interactions between malignant cells and 

the host to remodel the tissue matrix may be more consistent. It is already known that high 

lymphocyte density is a common indicator of good prognosis at different stages of disease in 

many malignancies including HGSOC (14). We suggest that another common feature of 

TMEs may be patterns of matrisome genes and proteins and that these also have prognostic 

significance.  

The up-regulated genes that were most significantly related to disease score in our analysis, 

COL11A1, COMP, VCAN, FN1, COL1A1 and CTSB have all been associated with cancer 

progression, poor prognosis and malignant cell invasion in ovarian and/or other cancers (42-

49). For example, fibronectin promotes ovarian cancer invasion and metastasis through an 

α5β1-integrin/c-Met/FAK/Src-dependent signaling pathway (44) and COL11A1 and VCAN 
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feature in a 10-gene poor prognostic signature of collagen-remodeling genes regulated by 

TGF-β signaling in ovarian cancer (45). More recently gene expression of COL11A1 showed 

a positive association with poor prognosis in several epithelial cancers (49). Importantly, the 

matrix index appears to correlate with certain immune cell signatures that are also known to 

influence prognosis. For example, the matrix index does not positively correlate with CD8 

molecular signatures, which are associated with good prognosis in HGSOC, but significantly 

correlates with Treg and Th2 signatures.  

We have not focused on proteases in this study. However, in our samples, normal tissue ECM 

stained highly positive and evenly for COL1A1, but COL1A1 staining in diseased sections, 

whilst still strong, appeared more uneven. In particular there was reduced staining around 

malignant cell areas. This may be due to expression of proteases such as MMP13, which 

degrade collagen structures (50), that we identified in our PLS analysis. Other matrix 

remodeling proteases that we identified such as MMP7, MMP11, CTSB, and ST14 are also 

able to degrade collagens, albeit to a lesser extent, but may also be capable of degrading 

matrix proteoglycans and glycoproteins (51,52). In addition to protease activity, the apparent 

reduction in COL1A1 by mass ratio (Figure 3A) was in part due to the relative increase in 

matrisome complexity in diseased tissues. Also, we used a modified matrisome analysis 

method which increased our protein detection coverage, at the cost of underestimating the 

absolute amount of large fibrous core matrisome proteins such as COL1A1. 

As we have shown, there was a core group of matrisome molecules that best predicted tissue 

modulus. This appears to be through an expansion of matrisome glycoproteins and 

proteoglycans (Figure 3A) and a reorganization of fibrillar collagens (Figure 3G). The 

expansion of the glycoprotein and proteoglycan compartment increases the potential for post-

translational modification within the extracellular space which could significantly alter the 

mechanical properties of the tissue, particularly through glycosylation and cross-linking (53). 
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For example, glycosaminoglycans on proteoglycans contribute to hydration, which 

contributes to tissue stiffness (54). Additionally, specific ECM cross-linking molecules, 

including the pro-lysyl hydroxylases which cross-link matrix proteins through collagen-like 

peptides, were associated with increasing disease in our samples (55). Molecules like 

COL11A1 and COMP are normally only present in stiffer tissues such as cartilage and bone, 

while VCAN plays a role in the morphogenesis of these stiffer tissues. In addition, collagens 

11 and 6 play roles in collagen fibril organization and matrix integrity.  

Tumor mechanics have a profound effect on fibroblasts and cancer cells and can promote 

tumor progression and metastasis (56). Stiffening of ECM creates a feed-forward self-

reinforcing loop that contributes to the activation state of the fibroblast (57). Elevated 

mechano-signalling in PDAC cells as a result of elevated tissue stiffening, promotes tumor 

progression and aggression (8). In breast tumors, the stiffest regions are located at the 

invasive margins and tumors harboring the stiffest regions are the most aggressive (58). 

There is a significant desmoplastic response in most solid tumors, but given that there is large 

intra- and inter-tumor heterogeneity it is important to understand why our index of matrisome 

gene expression defines patients with poor prognosis in multiple human cancers. The matrix 

index does not seem to be simply a measure of the amount of desmoplasia or stromal 

component that accompanies cancer growth. We believe that it is a measure of a type 

matrisome composition that is more able to promote tumor growth. We found a strong 

association between the density of -SMA and α-FAP positive cells, two markers commonly 

associated with activation of cancer associated fibroblasts, and disease score and there are 

several examples in the literature of poor prognostic fibroblast, desmoplastic, wound healing 

and stromal signatures in individual cancer types e.g. (39,59). As fibroblasts are the 

predominant matrix producing cells in many tissues this may, at least partially, explain the 

commonality of the matrix index in different cancers. It is also interesting that some of the 
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matrix index molecules we found to be down-regulated as disease increases (LAMB1, 

LAMC1, LAMA4, COL15A and HSPG2) are associated with the basement membrane which 

is vital for maintaining tissue homeostasis.  

Malignant cell response to tumor-associated fibrosis, and the stromal cell phenotypes that 

contribute to ECM deposition, can vary within and between major cancer types. This was 

shown in great detail recently in a study of experimental and human pancreatic cancers where 

a distinct malignant cell genotype modulated the fibrotic phenotype of the tissue and 

pathology (8). This does not argue against our finding because we have found the matrix 

index is variable between different cases of each cancer.  

As the predictive power of the matrix index was independent of age, stage and response to 

primary treatment, we suggest that the pattern of change in the matrisome may reflect 

increased propensity of the malignant cells to establish metastases. It is intriguing that five of 

the six up-regulated ECM genes in our matrix index (COMP, VCAN, FN1, COL1A1 and 

CTSB) are typical of pre-metastatic niches (60). Another explanation for the association with 

poor prognosis could be that this configuration of ECM molecules prevents infiltration or 

effector function of host anti-tumor immune cells. A stiffened matrix can compromise T-cell 

antigen presentation and proliferation as well as Th1-cell differentiation (61). In addition, the 

ECM acts as a reservoir for angiogenic factors and is important for migration of endothelial 

cells during neo-angiogenesis and vascular remodeling seen in cancer (62). 

Many of the matrix index molecules described above circulate systemically as fragments 

from protease remodeling, sometimes as neo-epitopes (63). Therefore, further investigation 

of the matrix index may have potential as a cancer diagnostic/prognostic blood test. 

If we have identified a common and especially detrimental signature of the tumor-associated 

matrisome, then agents that could target or reconfigure the cancer matrisome could have wide 
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applicability in solid cancers and may enhance the action of immunotherapies, especially 

given the association of high matrix index with immunosuppressive T cell signatures.  

Some molecules of the matrix index may also prove good targets for drug delivery to the 

tumor site. A recent study demonstrated collagen 1 targeting of an anti-EGFR mAb showed 

increase therapeutic efficacy (64). Targeting matrix index molecules which are not as 

ubiquitous as collagen 1 may provide a significant advancement to such strategies.  

 

 

Methods 

Ovarian cancer patient samples 

Patient samples were kindly donated by women with high-grade serous ovarian cancer 

(HGSOC) undergoing surgery at Barts Health NHS Trust between 2010 and 2014. Blood and 

tissue that was deemed by a pathologist to be surplus to diagnostic and therapeutic 

requirement were collected together with associated clinical data under the terms of the Barts 

Gynae Tissue Bank (HTA license number 12199. REC no: 10/H0304/14). Each patient gave 

written informed consent and the study was approved by a UK national review board. The 

studies were conducted in accordance with the Declaration of Helsinki and International 

Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). 

 

RNA isolation and sequencing 

Total RNA was extracted from 10 x 50 μm cryosections from frozen tissue sections and 

placed directly into the RLT Plus buffer (Qiagen) and rigorously vortexed. Samples were 

then processed using Qiagen RNeasy Plus Micro kit according to manufacturer’s instructions. 

RNA quality was analyzed on agilent bioanalyzer 2100 using RNA PicoChips according to 

manufacturer’s instructions. RNA integrity numbers (RIN) were between 8.1 and 9.9. RNA-

Seq was performed by Oxford Gene Technology (Benbroke, UK) to ~42x mean depth on the 
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Illumina HiSeq2500 platform, strand-specific, generating 101bp paired-end reads, as 

previously described (65). The detailed methods regarding RNA sequencing and 

bioinformatic analysis are provided in the Supplementary Methods.  

 

Quantitative Proteomics 

The ECM component was enriched from frozen whole tissue sections (20 x 30 μm sections, 

approximately 40-50 mg of tissue) as previously described (17). The extracted proteins were 

reduced, alkylated and digested with trypsin. Peptides were separated by nanoflow ultra-high 

pressure liquid chromatography (UPLC, NanoAcquity, Waters) and analyzed by mass 

spectrometry using a LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific). The 

detailed methods of ECM component enrichment, peptide preparation, mass spectrometry 

and bioinformatics analysis are provided in the Supplementary Methods.  

 

Cytokine and chemokine analysis 

Cytokine and chemokines were assayed using Mesoscale Discovery Platform (MSD SI2400) 

according to manufacturer’s instructions. Cytokine panel 1(Human) K15050D, 

Proinflammatory panel 1(human) K0080087, and Chemokine panel 1(Human) K0080125 

were used. Samples used were lysates from the ECM-enrichment protocol (described above). 

The amount of total protein used from each sample was between 1 and 3 μg.  

 

Mechanical characterization 

Mechanical characterisation was performed on whole tissues using a flat-punch indentation 

methodology on an Instron ElectroPuls E1000 (Instron, UK) equipped with a 10 N load cell 

(resolution = 0.1 mN) in order to measure the modulus of the tissue samples(15)(Delaine-



 

 22 

Smith et al., 2016). The detailed method of quantification is provided in the Supplementary 

Methods. 

 

Histochemical analysis 

Frozen tissues that were subsequently used for RNA, proteomics and cytokine analysis were 

cryosectioned to 8-10 µm slices. Sections were fixed in in 4 % paraformaldehyde (PFA) and 

stained with haematoxylin and eosin using standard methods. Tissues used in mechanical 

characterization were cut in half at the center of the tissue dye marked area and perpendicular 

to the direction of indentation while still frozen. Tissue was then fixed in 4 % PFA for 24 h 

and paraffin embedded and sectioned (8 µm) using standard procedures followed by H&E 

staining. All tissue sections were scanned using a 3DHISTECH Panoramic 250 digital slide 

scanner (3DHISTECH, Hungary) and the resulting scans were analysed using Definiens 

software (Definiens AG, Germany). Disease scores were determined firstly by manually 

defining regions of interest in the tissue that represented tumor, stroma, fat (adipocytes) or 

other (lymphatic structure) and then training the software to recognize these regions of 

interest. Disease score was expressed as a percentage of the whole tissue area that contained 

tumor and/or stroma (Figure 1B). Detailed methods of immunohistochemical analysis for 

quantification of immune cells, α-SMA and α-FAP positive cells, adipocyte diameters, ECM 

proteins and second-harmonic generation microscopy are provided in the Supplementary 

Methods. 

 

RNA in situ hybridization 

Chromogenic in situ hybridization for VCAN (Probe-Hs-VCAN, Cat No. 430071, Advanced 

Cell Diagnostics Inc. USA) was performed using the RNAscope 2.5 HD Detection Reagent 
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kit (Advanced Cell Diagnostics Inc.) according to the manufacturer’s instructions (see 

Supplementary Methods). 

 

Statistical and bioinformatics analysis 

All statistical analyses and graphics were performed in the statistical programming language 

R (version 3.1.3). Detailed methodology for PLS regression models, Matrix index and its 

clinical association across cancer types is provided in the Supplementary Methods. 

 

Accession Numbers 

RNA-Seq data have been deposited in Gene Expression Omnibus (GEO) under the accession 

number GSE71340. Proteomic data are available via the PRIDE database accession number 

PXD004060. 

 

Data availability 

All of the primary data are deposited at http://www.canbuild.org.uk. 
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Figure 1. Study design and sample description  

a) Overview of the samples and the analyses conducted on the same tissue specimen. b) Bar 

plot shows results from digital analysis of architecture of haematoxylin and eosin (H&E)-

stained samples based on percentage of malignant cell area (tumor), stroma, and adipocyte 

area, coloured blue, green and red respectively. The combined percentage area occupied by 

tumor and stroma was used to determine the ‘disease score’ of each sample. Each G number 

represents one sample. Upper microscope images show H&E staining of a biopsy and the 

same biopsy pseudo-coloured as malignant cell area (tumor) blue, stroma green and 

adipocyte area, red. Bottom images show four different H&E-stained samples representative 

of sample range with increasing disease score. c) Schematic of the PLS regression method 

used to define higher-order features of the tumor microenvironment from molecular 

components. 

  



 

 31 

Figure 2. The cells of the TME change with disease score  

a) Adipocyte diameter negatively correlated with increasing disease score. Top panel, 

microscope images representative of low (left) and high (right) disease score tissue sections 

(stained for α-SMA by IHC) showing adipocytes. Scale-bar corresponds to 100µm. Bottom 

left panel, scatter plot illustrating mean ± sd of digitally quantified adipocyte diameter (linear 

regression, N = 16, R
2
 = 0.66, p = 0.0001). b) Correlation of -SMA positive cells against 

disease score. Top panel, representative low (left) and high (right) disease score tissue 

sections stained for -SMA by IHC. Scale-bar corresponds to 100µm. Bottom panel, 

quantification of -SMA+ area % against disease score (linear regression, N = 30, R
2
 = 0.83, 

p < 0.0001). c) Correlation of -FAP positive cells against disease score. Top panel, 

representative low (left) and high (right) disease score tissue sections stained for -FAP by 

IHC. Scale-bar corresponds to 100µm. Bottom panel, quantification of -FAP+ area % 

against disease score (power regression, N = 32, R
2
 = 0.77, p < 0.0001). d) Cleveland plots of 

immune cell counts against disease score (Spearman’s correlation, N = 34). e-f) Heatmap of 

pairwise Pearson’s correlation coefficients of e) immune cell counts (N = 34), f) MSD-

quantified cytokine/chemokine correlations against immune cell counts (N = 32).  h) IHC of 

IL16 in HGSOC omental biopsies. Scale-bars correspond to 100µm. g) Heatmap of pairwise 

Pearson’s correlation coefficients of MSD-quantified cytokine/chemokine (N = 32).  
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Figure 3. Identification of matrisome proteins and genes that define tissue architecture  

a) Matrisome data displayed as relative mass ratios. Top panels show individual matrisome 

proteins identified in low and high disease score tissue; bottom panels show the relative 

proportions of each of the major classes of matrisome proteins in lowest (N = 6) versus 

highest disease score (N = 10). b) Line graphs illustrating normalized protein abundance and 

local polynomial regression fitted trend lines of proteins that either decrease (top panel), or 

increase (bottom panel) with disease score. c) PLS-identified matrisome proteins and d) 

matrisome genes that define disease score. e) Scatter plot of gene and protein correlation with 

disease score, highlighted molecules denote significant correlations (Pearson’s correlation, N 

= 33, p < 0.05). f) IHC staining for four matrisome proteins, FN1, COMP, CTSB, COL11A1 

identified from PLS analysis as highly significantly related to disease score. Scale-bars 

correspond to 200µm. g) Collagen fiber alignment; top panel shows representative images of 

high and low disease score tissue sections visualised using second harmonic generation, and 

bottom panel, semi-quantification of fiber alignment from images plotted as number of fiber 

occurrences per angle bin (predominant fibre direction normalized to 0 degrees) with local 

polynomial regression fitted lines and disease color-coding.  
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Figure 4. Identification of molecular components that define tissue modulus  

a) Orientation of flat-punch indentation showing representative low and high disease score 

samples stained with H&E, dashed line indicates tissue area analysed for determining disease 

score. b) Representative load-displacement curve from loading phase obtained from high and 

low disease score samples. c) Optimal tissue modulus correlated against combined % tumor 

plus stroma (disease score) (N = 32, p < 0.05). d-f) Cross-validation plot of measured versus 

predicted tissue modulus values (diagonal line represents measured = predicted) and heatmap 

of PLS-identified d) matrisome proteins, e) matrisome genes, and f) all coding gene 

components that describe tissue modulus. Heatmap columns correspond to individual 

samples ordered by increasing tissue modulus.  (N = 29, 30 and 30, respectively). Rows 

ordered by decreasing model weight values.  
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Figure 5. A matrix signature that predicts survival in ovarian cancer 

a) Venn diagram showing the overlap of PLS-identified molecules associated to tissue 

modulus and disease score (DS) at both gene and protein level. A total of 22 ECM-associated 

molecules overlapped across all analyses, red colour denotes positive association and blue 

colour negative association of each molecule at gene (G) and protein (P) level with disease 

score and tissue modulus. b) Network of known protein:protein interactions from IntAct and 

BioGRID within the 22 ECM-associated. Visualisation was carried out using Cytoscape 

v.3.3.0. c) Based on gene expression levels of these molecules we calculated a matrix index 

as the ratio of average level of expression of genes positively associated to those negatively 

associated with disease score and tissue modulus. Scatter plots show the correlation of matrix 

index with tissue modulus (linear regression, N = 30, R
2
 = 0.74, p < 0.0001) and disease 

score (linear regression, N = 35, R
2
 = 0.76, p < 0.0001). d) Association of matrix index with 

immune gene signature expression. Barplot illustrates Spearman p-values, FDR corrected 

using the Benjamini & Hochberg method. Red denotes positive correlations, blue denotes 

negative and gray denotes insignificant associations. The dotted line specifies the significance 

cutoff p = 0.05. e) Kaplan-Meier survival curves with overall survival of TCGA and ICGC 

dataset for HGSOC divided by high or low matrix index. The x-axis is in the unit of years. f) 

Comparison of hazard ratio scores (HR, with 95% CI) derived from Cox proportional hazards 

model for matrix index and the indicated gene expression signatures extracted from literature 

on the ovarian TCGA dataset. Left panel corresponds to univariate analysis, right panel 

corresponds to multivariate analysis taking into account age, tumor stage, grade and treatment 

(i.e., primary therapy outcome success). The asterisks represent the significance in the KM 

analysis between the high- and low-index groups (***p < 0.001, **p < 0.01, *p < 0.05 

and0.05 < p < 0.1). 
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Figure 6. Matrix index reveals a common stromal reaction across cancers  

a) Kaplan-Meier survival curves with overall survival from the indicated datasets divided by 

high or low matrix index. The x-axis is in the unit of years. b) Multivariate hazard ratio (HR, 

with 95% CI) derived from a Cox proportional hazards regression model across cancer types / 

datasets using the matrix index. In each cancer, patients were split into high and low index 

groups, and their association with the overall survival (OS) was tested taking into account 

age, stage, grade (T-factor), and treatment factors. Asterisks represent the significance in the 

KM analysis between the high- and low-index groups (***p < 0.001, **p < 0.01, *p < 0.05 

and0.05 < p < 0.1). HR > 1 means that high index is inversely correlated with OS, while 

HR < 1 means high index positively correlated OS. c) Example IHC images from TNBC, 

PDAC and DLBCL biopsies digitally quantified using Definiens
TM

 software on cancer tissue 

array cores for matrix index proteins FN1, COL11A1, CTSB, and COMP. High intensity 

staining = red, medium = orange, low = yellow. d) Quantification of IHC staining on tissue 

arrays from TNBC, PDAC and DLBCL biopsies using Definiens
TM

 software. Box plots 

illustrate the percentage area of high intensity staining for each marker. Scale bar = 500µm. 

COL11A1 and FN1, N = 30, 36, 54; CTSB, N = 28, 35, 52; COMP, N = 29, 35, 54; for 

TNBC, PDAC and DLBCL respectively. 
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