64 research outputs found

    A Review on Role of Different Adipokines in Gestational Diabetes

    Get PDF
    Adipokines are cell-signaling molecules produced by the adipose tissue that play functional roles in energy or metabolic status of the body, inflammation, obesity, gestational diabetes etc. Adipokines come in several forms, including adiponectin, leptin, chemeein, resistin, and nicotinamide phosphoribosyl transferase. The hormone adiponectin is primarily recognised for its anti- inflammatory and insulin-sensitizing properties. Through its anti-inflammatory, anti-fibrotic, and antioxidant properties, the adipocyte-secreted hormone adiponectin regulates lipid metabolism, insulin sensitivity, blood sugar levels, and adipocyte function. The hormone leptin, which is released from adipose tissue (body fat), aids the body in long-term maintenance of a healthy weight. In order to prevent the body from producing the hunger response when it doesn't need energy. White adipocytes release resistin, a hormone high in cysteine. Insulin resistance is influenced by resistin. Adipocytes secrete a protein called chemerin, which has endocrine functions in metabolism and immunity as well as autocrine/paracrine effects on adipose formation and function. Due to significantly greater oestrogen levels, there is an increase in insulin sensitivity in the first and second trimesters. Increased insulin resistance and decreased sensitivity are caused by a number of antagonistic hormones, particularly placental lactogen, leptin, progesterone, prolactin, and cortisol in the late second and early third trimester. In addition to outlining their mechanisms of action in the development of gestational diabetes, this review paper attempts to summarise the functions of adipokines in the induction of insulin resistance during pregnancy

    HCH and DDT Residues in Indian Soil: Atmospheric Input and Risk Assessment

    Get PDF
    HCH and DDT Residues in Indian Soil: Atmospheric Input and Risk Assessment

    Endocrine-disrupting chemicals used as common plastic additives: Levels, profiles, and human dietary exposure from the Indian food basket

    Get PDF
    Endocrine-disrupting chemicals (EDCs) such as phthalic acid esters (PAEs) and bisphenol A (BPA) are the most widely used plastic additives in polymeric materials. These EDCs are ubiquitously distributed in the environment. Hence selected PAEs and BPA were investigated in twenty-five food types and drinking water (supply and packaged) from the metropolitan city, Delhi, and the peri-urban areas of a non-metropolitan city, Dehradun. Except cabbage and orange, the sum of thirteen PAEs (∑13PAEs) and BPA in all the other food types were significantly higher in Delhi over Dehradun (p < 0.01). Highest mean ∑13PAEs (665 ng/g) and BPA (73 ng/g) were observed in cottage cheese and potatoes, respectively followed by fish (PAEs - 477 ng/g, BPA - 16 ng/g). Supply water from the west zone of Delhi was found to contain the highest concentration of BPA (309 ng/L) and ∑13PAEs (5765 ng/L) with the dominance of diethyl phthalate (DEP). Based on the compositional profile and compound-wise principal component analysis, environmental contamination and food processing were attributed as significant sources of most priority PAEs in food samples. Di-ethyl hexyl phthalate (DEHP) was over 100-fold higher in the bottled water from local brands than composite bottled water samples. Packaging material was identified as a source for di-n-butyl phthalate (DnBP) in packaged food. This study observed the highest estimated daily dietary intake (EDI) in the high-fat-containing food products viz., cottage cheese, and fish from north Delhi. High bioaccumulation of BPA can be a possible reason for elevated EDI in vegetables and local fish of Delhi. Unlike Dehradun, EDI for ∑13PAEs and BPA was slightly higher for the non-vegetarian adult when compared to the vegetarian adult. DEHP and DnBP exhibited the highest estimated estrogenic potential for bottled water from local brands. Dietary exposure due to six priority PAEs contamination in food stuffs was two to four-fold higher in Delhi than Dehradun for adult man and woman.acceptedVersio

    Unlocking India’s Potential in Managing Endocrine-Disrupting Chemicals (EDCs): Importance, Challenges, and Opportunities

    Get PDF
    Endocrine-disrupting chemicals (EDCs) are a prime concern for the environment and health globally. Research shows that in developing countries such as India both the environment and human populations are severely exposed to EDCs and consequently experience rising incidents of adverse health effects such as diabetes and cancers. In this paper, we discuss the current EDC management approach in India, critically assess its limitations, and describe opportunities for potential improvements. Foremost, current EDC management actions and interventions in India are fragmented and outdated, and far behind the modern and comprehensive approaches adopted in the European Union and other developed countries. Strong and well-planned actions are required on various fronts of science, policy, commerce, and public engagement. These actions include the adoption of a dedicated and modern regulatory framework for managing EDCs, enhancing capacity and infrastructure for EDC monitoring in the environment and human population, employing public–private partnership programs for not only managing EDCs but also in the sectors that indirectly contribute toward the mismanagement of EDCs in the country, and raising awareness on EDCs and promoting health-preserving consumption habits among the public. As India hosts a large proportion of the global human population and biodiversity, the success or failure of its actions will substantially affect the direction of global efforts to manage EDCs and set an example for other developing countries.publishedVersio

    A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with

    Get PDF
    Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study, a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected from Indian urban (Delhi) and peri-urban (Dehradun) areas. Food basket contamination data were used to estimate EDC dietary exposure and compare it with that of the average European population estimated from available monitoring data. All the target contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributers to the measured EDC contamination. Food supplied to Delhi's markets had higher EDC contamination than that supplied to the peri-urban market in Dehradun. Despite lax compliance and control measures, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher EDC residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC content in food can lead to better protection of health in both these contexts

    Characterization of some naphthalene using bacteria isolated from contaminated Cooum Riverine sediment of the Bay of Bengal (India)

    Get PDF
    Microorganisms capable of using naphthalene as the sole carbon source were isolated from the contaminated sediment of Cooum River. Twenty one isolates were recovered and nine were selected for enrichment due to differences in their morphological characteristics. Out of nine isolates, only four (NS3-SRMND14B, NS14-SRMND14A, NS15-SRMND14D and NS19- -SRMND14E) were capable of completely utilizing naphthalene as the sole source of carbon in carbon free minimal medium (CFMM) supplemented with naphthalene. 16S rDNA sequencing showed that all the four isolates were distantly related to each other and belongs to Bacillus sp. (NS3-SRMND14B), Pseudomonas sp. (NS14-SRMND14A), Cellulosimicrobium sp. (NS15-SRMND14D) and Sphingobacterium sp. (NS19-SRMND14E), respectively. Based on the phylogenetic analysis of 16S rDNA sequencing, the isolate Sphingobacterium sp. (NS19-SRMND14E) has been identified as novel strain. Polymerase chain reaction (PCR) technique showed the presence of naphthalene dioxygenase (ndo) gene responsible for naphthalene degradation only in the Pseudomonas sp. (NS14-SRMND14A). We observed that the ndo gene is not the only gene responsible for naphthalene degradation. Based on our study, the indigenous microorganisms isolated from Cooum Riverine sediment can be used for bioremediation of the polluted sediment along the Bay of Bengal.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3840

    Distribution of polychlorinated biphenyls in agricultural soils from NCR, Delhi, India

    Get PDF
    ABSTRACT Twenty eight polychlorinated biphenyls (PCBs) congeners including twelve dioxin-lik

    Seasonal variation of atmospheric organochlorine pesticides and polybrominated diphenyl ethers in Parangipettai, Tamil Nadu, India:Implication for atmospheric transport

    Get PDF
    During 1990s, residues of several persistent organic pollutants (POPs) in different environmental matrices have been reported from a tropical coastal site, Parangipettai (PI), located along the bank of the Vellar River in Tamil Nadu. Hence to fill the existing data gap after the strict ban on several POPs, high volume air sampling was conducted in PI to study the variability of atmospheric pesticidal POPs and polybrominated diphenyl ethers (PBDEs) during summer, pre-monsoon and monsoon. Emission source regions were tracked by using five days back trajectory analysis. Derived range of air concentrations in pg/m3 were: DDTs; BDL - 1976; HCHs, 260–1135, HCB; 52–135, chlordanes; 36–135, endosulfans; 66–1013. ∑6PBDE ranged between 25 and 155 with highest concentration in summer followed by pre-monsoon and monsoon. Atmospheric DDT and HCH in PI has drastically reduced by several thousand folds from the past report thereby showing the strict ban on agricultural use of these compounds. During monsoon fresh source of o,p′‑DDT, trans‑chlordane and α‑endosulfan was evident. Usually higher level of endosulphan sulfate in PI seems to be likely affected by the air mass originating from a neighbouring state Kerela, where endosulfan has been extensively used for cashew plantations. Similarly in summer, the day showing the highest level of PBDEs, the sample was concurrently impacted by air parcel comprised of two major clusters, 1 (25%) and 2 (49%) that traversed through the metropolitan cities like Bangalore and Chennai. Dominance of BDE-99 over BDE-47 in Parangipettai is in line with the PBDE profile reported from Chennai city during the similar time frame. Average concentration of tetra and penta BDE congeners in summer samples were nearly 2–3 folds higher than pre-monsoon or monsoon. Given the fact that strong localised source for heavier BDE congeners are lacking in PI, regional atmospheric transport from the strong emission source regions in Chennai
    corecore