398 research outputs found

    Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering

    Get PDF
    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and non-resonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom -- the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usual through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting ones ability to quantitively characterize the coupling. Here we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an 8-band model of copper oxides, we study the contributions from the lowest order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross-section as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and non-resonant x-ray scattering, as well as Raman and infrared conductivity.Comment: 10 pages, 10 figure

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    Three dimensional collective charge excitations in electron-doped cuprate superconductors

    Full text link
    High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.Comment: This is the version of first submission. The revised manuscript according to peer reviews is now accepted by Nature and will be published online on 31st Oct., 201

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state

    Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation.

    Get PDF
    The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry

    Management system for optimizing public transport networks: GPS record

    Get PDF
    As cities continue to grow in size and population, the design of public transport networks becomes complicated, given the wide diversity in the origins and destinations of users [1], as well as the saturation of vehicle infrastructure in large cities despite their attempts to adapt it according to population distribution. This indicates that, in order to reduce users’ travel time, it is necessary to implement alternative road solutions to the use of cars, increasing investment in public transportation [2, 3] by conducting a comprehensive analysis of the state of transportation. This situation has made appear the solutions and development oriented to transportation based on Internet of Things (IoT) which allows, in a first stage, monitoring of public transport systems, in order to optimize the deployment of transport units and thus reduce the time of transfer of users through the cities [4]. These solution proposals are focused on information collected from user resources (data collected through smart phones) to create a common database [5]. The present study proposes the development of an intelligent monitoring and management system for public transportation networks using a hybrid communication architecture based on wireless node networks using IPv6 and cellular networks (LTE, LTE-M)

    Fermi level shift in carbon nanotubes by dye confinement

    Get PDF
    International audienceDye confinement into carbon nanotube significantly affects the electronic charge density distribution of the final hybrid system. Using the electron-phonon coupling sensitivity of the Raman G-band, we quantify experimentally how charge transfer from thiophene oligomers to single walled carbon nanotube is modulated by the diameter of the nano-container and its metallic or semiconducting character. This charge transfer is shown to restore the electron-phonon coupling into defected metallic nanotubes. For sub-nanometer diameter tube, an electron transfer optically activated is observed when the excitation energy matches the HOMO-LUMO transition of the confined oligothiophene. This electron doping accounts for an important enhancement of the photoluminescence intensity up to a factor of nearly six for optimal confinement configuration. This electron transfer shifts the Fermi level, acting on the photoluminescence efficiency. Therefore, thiophene oligomer encapsulation allows modulating the electronic structure and then the optical properties of the hybrid system

    Patterns of language and auditory dysfunction in 6-year-old children with epilepsy

    Get PDF
    In a previous study we reported difficulty with expressive language and visuoperceptual ability in preschool children with epilepsy and otherwise normal development. The present study analysed speech and language dysfunction for each individual in relation to epilepsy variables, ear preference, and intelligence in these children and described their auditory function. Twenty 6-year-old children with epilepsy (14 females, 6 males; mean age 6:5 y, range 6 y–6 y 11 mo) and 30 reference children without epilepsy (18 females, 12 males; mean age 6:5 y, range 6 y–6 y 11 mo) were assessed for language and auditory ability. Low scores for the children with epilepsy were analysed with respect to speech-language domains, type of epilepsy, site of epileptiform activity, intelligence, and language laterality. Auditory attention, perception, discrimination, and ear preference were measured with a dichotic listening test, and group comparisons were performed. Children with left-sided partial epilepsy had extensive language dysfunction. Most children with partial epilepsy had phonological dysfunction. Language dysfunction was also found in children with generalized and unclassified epilepsies. The children with epilepsy performed significantly worse than the reference children in auditory attention, perception of vowels and discrimination of consonants for the right ear and had more left ear advantage for vowels, indicating undeveloped language laterality

    A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa

    Get PDF
    BACKGROUND: In sub-Saharan Africa, the burden of human immunodeficiency virus (HIV)-associated tuberculosis is high. We conducted a trial with a 2-by-2 factorial design to assess the benefits of early antiretroviral therapy (ART), 6-month isoniazid preventive therapy (IPT), or both among HIV-infected adults with high CD4+ cell counts in Ivory Coast. METHODS: We included participants who had HIV type 1 infection and a CD4+ count of less than 800 cells per cubic millimeter and who met no criteria for starting ART according to World Health Organization (WHO) guidelines. Participants were randomly assigned to one of four treatment groups: deferred ART (ART initiation according to WHO criteria), deferred ART plus IPT, early ART (immediate ART initiation), or early ART plus IPT. The primary end point was a composite of diseases included in the case definition of the acquired immunodeficiency syndrome (AIDS), non-AIDS-defining cancer, non-AIDS-defining invasive bacterial disease, or death from any cause at 30 months. We used Cox proportional models to compare outcomes between the deferred-ART and early-ART strategies and between the IPT and no-IPT strategies. RESULTS: A total of 2056 patients (41% with a baseline CD4+ count of ≥500 cells per cubic millimeter) were followed for 4757 patient-years. A total of 204 primary end-point events were observed (3.8 events per 100 person-years; 95% confidence interval [CI], 3.3 to 4.4), including 68 in patients with a baseline CD4+ count of at least 500 cells per cubic millimeter (3.2 events per 100 person-years; 95% CI, 2.4 to 4.0). Tuberculosis and invasive bacterial diseases accounted for 42% and 27% of primary end-point events, respectively. The risk of death or severe HIV-related illness was lower with early ART than with deferred ART (adjusted hazard ratio, 0.56; 95% CI, 0.41 to 0.76; adjusted hazard ratio among patients with a baseline CD4+ count of ≥500 cells per cubic millimeter, 0.56; 95% CI, 0.33 to 0.94) and lower with IPT than with no IPT (adjusted hazard ratio, 0.65; 95% CI, 0.48 to 0.88; adjusted hazard ratio among patients with a baseline CD4+ count of ≥500 cells per cubic millimeter, 0.61; 95% CI, 0.36 to 1.01). The 30-month probability of grade 3 or 4 adverse events did not differ significantly among the strategies. CONCLUSIONS: In this African country, immediate ART and 6 months of IPT independently led to lower rates of severe illness than did deferred ART and no IPT, both overall and among patients with CD4+ counts of at least 500 cells per cubic millimeter. (Funded by the French National Agency for Research on AIDS and Viral Hepatitis; TEMPRANO ANRS 12136 ClinicalTrials.gov number, NCT00495651.)
    corecore