109 research outputs found

    No Link Between Speech-in-Noise Perception and Auditory Sensory Memory - Evidence From a Large Cohort of Older and Younger Listeners

    Get PDF
    A growing literature is demonstrating a link between working memory (WM) and speech-in-noise (SiN) perception. However, the nature of this correlation and which components of WM might underlie it, are being debated. We investigated how SiN reception links with auditory sensory memory (aSM) - the low-level processes that support the short-term maintenance of temporally unfolding sounds. A large sample of old (N = 199, 60-79 yo) and young (N = 149, 20-35 yo) participants was recruited online and performed a coordinate response measure-based speech-in-babble task that taps listeners' ability to track a speech target in background noise. We used two tasks to investigate implicit and explicit aSM. Both were based on tone patterns overlapping in processing time scales with speech (presentation rate of tones 20 Hz; of patterns 2 Hz). We hypothesised that a link between SiN and aSM may be particularly apparent in older listeners due to age-related reduction in both SiN reception and aSM. We confirmed impaired SiN reception in the older cohort and demonstrated reduced aSM performance in those listeners. However, SiN and aSM did not share variability. Across the two age groups, SiN performance was predicted by a binaural processing test and age. The results suggest that previously observed links between WM and SiN may relate to the executive components and other cognitive demands of the used tasks. This finding helps to constrain the search for the perceptual and cognitive factors that explain individual variability in SiN performance

    Auditory edge detection: the dynamics of the construction of auditory perceptual representations

    Get PDF
    This dissertation investigates aspects of auditory scene analysis such as the detection of a new object in the environment. Specifically I try to learn about these processes by studying the temporal dynamics of magnetic signals recorded from outside the scalp of human listeners, and comparing these dynamics with psychophysical measures. In total nine behavioral and Magneto-encephalography (MEG) brain-imaging experiments are reported. These studies relate to the extraction of tonal targets from background noise and the detection of change within ongoing sounds. The MEG deflections we observe between 50-200 ms post transition reflect the first stages of perceptual organization. I interpret the temporal dynamics of these responses in terms of activation of cortical systems that participate in the detection of acoustic events and the discrimination of targets from backgrounds. The data shed light on the statistical heuristics with which our brains sample, represent, and detect changes in the world, including changes that are not the immediate focus of attention. In particular, the asymmetry of responses to transitions between 'order' and 'disorder' within a stimulus can be interpreted in terms of different requirements for temporal integration. The similarity of these transition-responses with commonly observed onset M50 and M100 auditory-evoked fields allows us to suggest a hypothesis as to their underlying functional significance, which so far has remained unclear. The comparison of MEG and psychophysics demonstrates a striking dissociation between higher level mechanisms related to conscious detection and the lower-level, pre-attentive cortical mechanisms that sub-serve the early organization of auditory information. The implications of these data for the processes that underlie the creation of perceptual representations are discussed. A comparison of the behavior of normal and dyslexic subjects in a tone-in-noise detection task revealed a general difficulty in extracting tonal objects from background noise, manifested by a globally delayed detection speed, associated with dyslexia. This finding may enable us to tease apart the physiological and behavioral corollaries of these early, pre-attentive processes. In conclusion, the sum of these results suggests that the combination of behavioral and MEG investigative tools can provide new insights into the processes by which perceptual representations emerge from sensory input

    Sensitivity to the temporal structure of rapid sound sequences — An MEG study

    Get PDF
    AbstractTo probe sensitivity to the time structure of ongoing sound sequences, we measured MEG responses, in human listeners, to the offset of long tone-pip sequences containing various forms of temporal regularity. If listeners learn sequence temporal properties and form expectancies about the arrival time of an upcoming tone, sequence offset should be detectable as soon as an expected tone fails to arrive. Therefore, latencies of offset responses are indicative of the extent to which the temporal pattern has been acquired. In Exp1, sequences were isochronous with tone inter-onset-interval (IOI) set to 75, 125 or 225ms. Exp2 comprised of non-isochronous, temporally regular sequences, comprised of the IOIs above. Exp3 used the same sequences as Exp2 but listeners were required to monitor them for occasional frequency deviants. Analysis of the latency of offset responses revealed that the temporal structure of (even rather simple) regular sequences is not learnt precisely when the sequences are ignored. Pattern coding, supported by a network of temporal, parietal and frontal sources, improved considerably when the signals were made behaviourally pertinent. Thus, contrary to what might be expected in the context of an ‘early warning system’ framework, learning of temporal structure is not automatic, but affected by the signal's behavioural relevance

    Pupil Dilation and Microsaccades Provide Complementary Insights into the Dynamics of Arousal and Instantaneous Attention during Effortful Listening

    Get PDF
    Listening in noisy environments requires effort- the active engagement of attention and other cognitive abilities- as well as increased arousal. The ability to separately quantify the contribution of these components is key to understanding the dynamics of effort and how it may change across listening situations and in certain populations. We concurrently measured two types of ocular data in young participants (both sexes): pupil dilation (PD; thought to index arousal aspects of effort) and microsaccades (MS; hypothesized to reflect automatic visual exploratory sampling), while they performed a speech-in-noise task under high- (HL) and low- (LL) listening load conditions. Sentences were manipulated so that the behaviorally relevant information (keywords) appeared at the end (Experiment 1) or beginning (Experiment 2) of the sentence, resulting in different temporal demands on focused attention. In line with previous reports, PD effects were associated with increased dilation under load. We observed a sustained difference between HL and LL conditions, consistent with increased phasic and tonic arousal. Importantly we show that MS rate was also modulated by listening load. This was manifested as a reduced MS rate in HL relative to LL. Critically, in contrast to the sustained difference seen for PD, MS effects were localized in time, specifically during periods when demands on auditory attention were greatest. These results demonstrate that auditory selective attention interfaces with the mechanisms controlling MS generation, establishing MS as an informative measure, complementary to PD, with which to quantify the temporal dynamics of auditory attentional processing under effortful listening conditions.SIGNIFICANCE STATEMENT Listening effort, reflecting the "cognitive bandwidth" deployed to effectively process sound in adverse environments, contributes critically to listening success. Understanding listening effort and the processes involved in its allocation is a major challenge in auditory neuroscience. Here, we demonstrate that microsaccade rate can be used to index a specific subcomponent of listening effort, the allocation of instantaneous auditory attention, that is distinct from the modulation of arousal indexed by pupil dilation (currently the dominant measure of listening effort). These results reveal the push-pull process through which auditory attention interfaces with the (visual) attention network that controls microsaccades, establishing microsaccades as a powerful tool for measuring auditory attention and its deficits

    Is predictability salient? A study of attentional capture by auditory patterns.

    Get PDF
    In this series of behavioural and electroencephalography (EEG) experiments, we investigate the extent to which repeating patterns of sounds capture attention. Work in the visual domain has revealed attentional capture by statistically predictable stimuli, consistent with predictive coding accounts which suggest that attention is drawn to sensory regularities. Here, stimuli comprised rapid sequences of tone pips, arranged in regular (REG) or random (RAND) patterns. EEG data demonstrate that the brain rapidly recognizes predictable patterns manifested as a rapid increase in responses to REG relative to RAND sequences. This increase is reminiscent of the increase in gain on neural responses to attended stimuli often seen in the neuroimaging literature, and thus consistent with the hypothesis that predictable sequences draw attention. To study potential attentional capture by auditory regularities, we used REG and RAND sequences in two different behavioural tasks designed to reveal effects of attentional capture by regularity. Overall, the pattern of results suggests that regularity does not capture attention.This article is part of the themed issue 'Auditory and visual scene analysis'

    Generalization of auditory expertise in audio engineers and instrumental musicians

    Get PDF
    From auditory perception to general cognition, the ability to play a musical instrument has been associated with skills both related and unrelated to music. However, it is unclear if these effects are bound to the specific characteristics of musical instrument training, as little attention has been paid to other populations such as audio engineers and designers whose auditory expertise may match or surpass that of musicians in specific auditory tasks or more naturalistic acoustic scenarios. We explored this possibility by comparing students of audio engineering (n = 20) to matched conservatory-trained instrumentalists (n = 24) and to naive controls (n = 20) on measures of auditory discrimination, auditory scene analysis, and speech in noise perception. We found that audio engineers and performing musicians had generally lower psychophysical thresholds than controls, with pitch perception showing the largest effect size. Compared to controls, audio engineers could better memorise and recall auditory scenes composed of non-musical sounds, whereas instrumental musicians performed best in a sustained selective attention task with two competing streams of tones. Finally, in a diotic speech-in-babble task, musicians showed lower signal-to-noise-ratio thresholds than both controls and engineers; however, a follow-up online study did not replicate this musician advantage. We also observed differences in personality that might account for group-based self-selection biases. Overall, we showed that investigating a wider range of forms of auditory expertise can help us corroborate (or challenge) the specificity of the advantages previously associated with musical instrument training

    Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific Language Impairments.

    Get PDF
    Here we use two filtered speech tasks to investigate children's processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 - 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.Medical Research Council (Grant ID: G0400574)This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fpsyg.2016.0079

    Eye movements track prioritized auditory features in selective attention to natural speech

    Get PDF
    Over the last decades, cognitive neuroscience has identified a distributed set of brain regions that are critical for attention. Strong anatomical overlap with brain regions critical for oculomotor processes suggests a joint network for attention and eye movements. However, the role of this shared network in complex, naturalistic environments remains understudied. Here, we investigated eye movements in relation to (un)attended sentences of natural speech. Combining simultaneously recorded eye tracking and magnetoencephalographic data with temporal response functions, we show that gaze tracks attended speech, a phenomenon we termed ocular speech tracking. Ocular speech tracking even differentiates a target from a distractor in a multi-speaker context and is further related to intelligibility. Moreover, we provide evidence for its contribution to neural differences in speech processing, emphasizing the necessity to consider oculomotor activity in future research and in the interpretation of neural differences in auditory cognition
    • …
    corecore