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ABSTRACT

To probe sensitivity to the time structure of ongoing sound sequences, we measured MEG responses, in human lis-
teners, to the offset of long tone-pip sequences containing various forms of temporal regularity. If listeners learn se-
quence temporal properties and form expectancies about the arrival time of an upcoming tone, sequence offset
should be detectable as soon as an expected tone fails to arrive. Therefore, latencies of offset responses are indicative
of the extent to which the temporal pattern has been acquired. In Exp1, sequences were isochronous with tone
inter-onset-interval (IOI) set to 75, 125 or 225 ms. Exp2 comprised of non-isochronous, temporally regular se-
quences, comprised of the I0Is above. Exp3 used the same sequences as Exp2 but listeners were required to monitor
them for occasional frequency deviants. Analysis of the latency of offset responses revealed that the temporal struc-
ture of (even rather simple) regular sequences is not learnt precisely when the sequences are ignored. Pattern cod-
ing, supported by a network of temporal, parietal and frontal sources, improved considerably when the signals were
made behaviourally pertinent. Thus, contrary to what might be expected in the context of an ‘early warning system’
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framework, learning of temporal structure is not automatic, but affected by the signal's behavioural relevance.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/cc-by/4.0/).

Introduction

Sensitivity to the timing of sensory input plays a crucial role in the per-
ception of, and efficient interaction with, the environment (Nobre et al.,
2007). Due to the dynamic nature of sound, temporal information is per-
haps especially relevant in the context of the auditory modality. Music or
speech are often a prime example, but much more generally, the ability to
make sense of acoustic scenes, including resolving the identity and cur-
rent state of objects, requires the capacity to extract and retain the tempo-
ral patterning of the stimulus sequence.

Tapping studies (see Repp, 2005 for review), a classic method for in-
vestigating sensitivity to temporal structure in sound, demonstrate that
listeners can entrain to sequences of tones over a wide range of tempi
and rhythmic patterns. The tapping profile often exhibits predictive
properties — taps do not constitute reactions to a heard tone, but actually
precedes the pacing — suggesting that listeners have internalized the
pattern. In isochronous sequences, synchronization is commonly ob-
served for tone inter-onset-intervals in the range 150-1800 ms (Fraisse,
1982; Repp, 2005) but the lower limit might be set by motor, rather
than perceptual, constraints.
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To understand how sensitivity to temporal structure might aid listen-
ing, investigations have focused on the effect of temporal context on pro-
cessing, demonstrating that context-induced temporal orienting — when
the stimulus history reliably predicts the timing of the next event —
speeds up reaction time and improves discrimination/identification per-
formance even in the absence of explicit attention (Jaramillo and Zador,
2011; Ellis and Jones, 2010; Lange, 2013; Tavano et al, 2014). This evi-
dence is taken to support the hypothesis that the brain entrains to rhyth-
mic sequences and recent imaging and electrophysiology studies have
demonstrated effects consistent with this notion, implicating a network
of temporal, parietal and motor regions in this process (Grahn and
Rowe, 2009; Lakatos et al., 2013; Fujioka et al., 2012; Arnal and Giraud,
2012).

An ‘extreme’ hypothesis, motivated by a supposed ‘early warning sys-
tem’ role for the auditory modality (Bendixen et al., 2012) suggests that
any regular temporal structure should, in principle, be learnable. Howev-
er, most previous investigations have focused on relatively slow rhythms
(<3 Hz) and simple (isochronous) temporal sequences (Lange, 2013;
Schwartze et al., 2011; Fujioka et al., 2012). The degree to which the
brain can ‘acquire’ more complex or rapid temporal patterns remains
poorly understood. Outlining the operational limits of these mechanisms —
that is, identifying the temporal patterns the brain is vs. is not sensitive to
- is essential to uncovering the neural computations underlying sensitiv-
ity to time.

1053-8119/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/cc-by/4.0/).
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To systematically probe these mechanisms, we use an implicit timing
paradigm, based on measuring brain responses to the offset (termina-
tion) of long sound sequences containing various temporal regularities.
If the brain is able to learn the temporal structure of a sequence and form
expectancies about the arrival time of an upcoming tone, sequence off-
set should be detectable as soon as an expected tone fails to arrive.
The analysis of latencies of sequence-offset responses may thus provide
a measure of the fidelity with which sequence time structure has been
acquired and, consequently, a window onto the brain processes in-
volved in tracking auditory input across time.

The ‘offset’ paradigm is notionally analogous to the ‘omission MMN’
paradigm which involves measuring brain responses to occasionally
omitted events within on-going sequences (Yabe et al., 1997; Horvath
et al.,, 2010; Bendixen et al., 2012; Jongsma et al., 2004; Hughes et al.,
2001). However much of this work has focused on slow isochronous
sequences and, in most cases, did not specifically measure latency
(but see Karamiirsel and Bullock, 2000; Yamashiro et al., 2009; Motz
et al., 2013).

Emerging from this literature is the finding that brain responses to
omitted sounds are initially (~50 ms) similar to presented tones, with
a mismatch response emerging thereafter (Janata, 2001; Bendixen
et al., 2009; SanMiguel et al., 2013), namely, that a template of a re-
sponse to a predicted tone is ‘pre-activated’ at the time of its expected
onset. In an intracranial recording study, Hughes et al. (2001) identified
neural foci showing responses to both present and omitted tones as well
as foci that appeared selective for omitted tones only (i.e. showed little
response to actually presented tones) but found no instances of veridi-
cal responses (responses only to actually presented tones), suggesting
that the expectation of future events is closely linked to processing of
those actually presented.

The present series of MEG experiments explicitly focuses on the pro-
cess of temporal expectation by measuring brain responses to non-
arriving sounds within varying, increasingly complex temporal con-
texts. Importantly, and in contrast to much of the existing work in the
field, the acoustic sequences used here are characterized by rapid
rates (>4 Hz) in order to specifically tap the brain mechanisms and
computations sub-serving sensitivity to timing within the range rele-
vant to sounds commonly encountered in our surroundings (e.g. the
phonemic and syllabic rate of speech, animal vocalizations, etc). Focus-
ing on brain responses evoked by the offset of a sequence, rather than
occasional tone omissions, enables the isolation of activations specifical-
ly related to the non-arriving tone, devoid of overlap with responses to
subsequent events (this is especially problematic for rapid sequences).
Arguably, this approach is also more ecologically relevant — abrupt off-
sets in the environment are a potential signal for imminent danger and
likely to engage rapid and efficient processing by the auditory system.

We hypothesized that the temporal structure of rapid isochronous
tone-pip sequences is ‘automatically’ acquired by the brain, even in the
absence of explicit attention. This is confirmed in Experiment 1 which
demonstrates robust offset responses with a latency that is precisely re-
lated to when the non-arriving tone was expected to occur. Experiment
2 then tested simple, regularly repeating, but non-isochronous se-
quences and revealed significantly increased offset response latencies —
indicating markedly worsened sensitivity to temporal structure in these
stimuli. Experiment 3 tested, and confirmed, the hypothesis that offset
response latencies would shorten when the sequences are attended,
demonstrating that the implicit learning of temporal structure is not
automatic but affected by behavioural relevance.

Materials and methods
Subjects
Ten subjects (mean age 27.6 years, SD = 4; 4 females) participated

in Experiment 1. Fifteen subjects (mean age 26.6 years, SD = 5; 7
females) participated in Experiment 2a and an additional group of 5

subjects (mean age 25.6, SD = 6.1; 3 females) participated in Experiment
2b. Twelve subjects (mean age 25.6 years, SD = 4.9; 5 females) partici-
pated in Experiment 3. Experiment 1 shared five participants with
Experiment 2a, one with Experiment 2b and two with Experiment 3.
Experiment 2a shared five participants with Experiment 2b and seven
with Experiment 3. Experiment 2b had five participants in common
with Experiment 3. The experiments took place several weeks apart.
All subjects were right-handed (Oldfield, 1971), reported normal hear-
ing, normal or corrected to normal vision, and had no history of neuro-
logical disorders. The experimental procedures were approved by the
research ethics committee of University College London and written in-
formed consent was obtained from each subject. Subjects were paid for
their participation.

Stimuli

Fig. 1A schematizes the stimuli used in Experiment 1. The signals
were sequences of 25 ms tone bursts (500 Hz) separated by silent inter-
vals of a fixed duration, resulting in an isochronous rhythm. In different
conditions, the duration of the silent interval was set to one of three
values (50, 100 or 200 ms), corresponding to inter-onset-intervals
(I01) of 75, 125 and 225 ms, respectively. These I0I durations were cho-
sen because rapid temporal patterns remain under-investigated, despite
the fact that the temporal properties of many natural sound sequences
are within this range. The sequences were of variable overall duration,
consisting of a minimum of 24 and maximum of 36 tone-bursts. The
stimulus set also contained long pure-tone stimuli (‘CONT’), used to mea-
sure the latency of ‘simple’ auditory cortical offset responses. The length
of the constant tone varied randomly between 1500 and 3500 ms. The
signals were created off-line at a sampling rate of 44.1 kHz and saved
in a 16-bit stereo WAV format. In total, 150 repetitions of each of the 4
experimental conditions were presented. All conditions were presented
in random order with the inter-sequence interval (ISI) randomized be-
tween 750 and 1500 ms.

Experiment 2a consisted of two stimulus blocks, order counter-
balanced across participants. The first block (Fig. 1B) comprised of
non-isochronous, but temporally regular, sequences. These were created
by using the same IOIs as in the isochronous sequences (Experiment
1) but such that they alternated regularly between the 3 values e.g.
75-125-225-75-125-225 etc or 225-125-75-225-125-75 and so on.
[I0Is were presented with equal probability. The resulting sequences
were therefore not strictly metrical (metrical rhythm, common in west-
ern music, is characterized by time values in the sequences constituting
multiples of a fixed beat; Povel and Essens, 1985; Povel and Okkerman,
1981). As in Experiment 1, sequences consisted of a random number
of tone bursts and were grouped into conditions based on the duration
of the silent interval after the last tone, i.e. based on the time at which
the next (non-arriving) tone is expected (see Fig. 1B). The ‘CONT’ condi-
tion, identical to that in Experiment 1, was also included in the stimulus
set. The second block (Fig. 1C) comprised of temporally irregular
sequences. The stimulus was generated as described for the regular
sequences except that the order of the I0Is was randomly permuted,
resulting in sequences that contained equal proportions of each of the
three I0I values, but in random order. Fig. 1C schematizes an example
of such a random sequence. The ‘CONT’ condition, identical to that in
Experiment 1, was also included in the stimulus set. To facilitate learning
of the patterns/statistics, each block began with a 2 minute long, unin-
terrupted presentation of the regular or random sequence. To assess po-
tential effects of sequence complexity, the experiment was repeated
(Experiment 2b) on a control group of 5 subjects using a single permuta-
tion of the three IOIs (i.e. 75-125-225-75-125-225 and so on).

Fig. 1D schematizes the stimuli used in Experiment 3. The stimuli
were identical to those in the regular block of Experiment 2 (IOI
order: 75-125-225-75-125-225 etc.) except that standard tone-pips
were occasionally replaced by frequency deviants (‘targets’) which sub-
jects were required to detect as quickly as possible. The frequency
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Fig. 1. Schematic representation of the stimuli. Experiment 1 (A) consisted of isochronous sequences with one of 3 101 durations (75, 125 or 225 ms). Experiment 2 contained two types of
stimuli: Regular sequences, consisting of a sequential repetition of the 3 I0Is (B), and random sequences (C) where the IOIs were presented in random order. Experiment 3 consisted of the
same regular sequences as in Experiment 2 except that these contained occasional frequency deviants which listeners were instructed to detect (D). The sequences were interrupted after a
variable duration and brain responses were grouped for analysis according to the IOl expected after sequence interruption. The sequences plotted, save for the random sequence in C, are
conditions where the expected I0], if listeners are able to learn the temporal structure, is 75 ms. The dashed line marks the time of the next expected tone pip.

difference between the target and standard tones was set just above
threshold (determined individually for each listener, mean frequency
of deviant tones was 540.2 Hz, SD = 10.5). 25% of sequences in the stim-
ulus set contained a target which could occur anywhere in the sequence.
Trials that contained targets within 2 s of sequence offset were excluded
from the analysis. Listeners received feedback about their performance
at the end of each block (hits, misses and false positives). As in Experi-
ment 2, above, the block began with a 2 minute long uninterrupted pre-
sentation of the regular sequence. This sequence contained no deviants.

In all three experiments, subjects were also presented with visual
stimuli which consisted of landscape images, grouped in series of 3
(duration of each image was 5 s, with a 2 s between-series interval
during which the screen was blank). Subjects were instructed to fixate
at a cross, drawn in the middle of the display and press a button when-
ever the third image in a series constituted a repetition of the first or
second one. Such repetitions occurred in 10% of the trials. The visual
task served as a decoy task — a means to ensure subject's alertness
and (in Experiments 1 and 2) to divert attention away from the auditory
stimuli. At the end of each block subjects received feedback about their
performance (number of hits, misses and false positives). Performance
was at ceiling — Experiment 1:94.2% (SD = 7.2), Experiment 2: 96.5%
(collapsed over Exp2a and Exp2b; SD = 5.7), Experiment 3: 90.2%
(SD = 9.6).

Procedure

The MEG scans were conducted in a seated upright position in a mag-
netically shielded room. The signals were delivered binaurally with a tube
phone attached to ear plugs (E-A-RTONE 3A 10 ), Etymotic Research, Inc)
inserted into the ear canal and presented at a comfortable listening level
adjusted individually for each participant. The experiment proper was
preceded by a functional source-localizer recording in which subjects lis-
tened to 200 repetitions of a 1-kHz, 50-ms sinusoidal tone (ISI random-
ized between 750 and 1550 ms). These responses were used to verify
that the subject was positioned properly in the machine, that signals

from auditory cortex showed a satisfactory signal-to-noise ratio (SNR),
and to determine which MEG channels best reflected activity within audi-
tory cortex. The experiment proper lasted for about 1 h and involved
naive listeners passively listening to sounds while performing an irrele-
vant (decoy) visual task. Responses were executed using a button box
held in the right hand. Short breaks were provided every 10 min but sub-
jects were required to remain still. Their position was monitored at the
beginning and end of each run.

In Experiment 3, in addition to the visual task, subjects also per-
formed an auditory task, as described above. Responses were delivered
using a different button on the same button box and feedback was pro-
vided at the end of each block.

Neuromagnetic recording and data analysis

Magnetic signals were recorded using a CTF-275 MEG system (axial
gradiometers, 274 channels, 30 reference channels; VSM MedTech,
Canada). Data were acquired continuously with a sampling rate of
300 Hz and a 100 Hz hardware low pass filter.

Functional localizer data were divided into 700-ms epochs, including
200-ms pre-onset, and baseline-corrected to the pre-onset interval. The
M100 onset response (Roberts et al., 2000) was identified for each subject
as a source/sink pair in the magnetic-field contour plots distributed over
the temporal region of each hemisphere. The M100 current source is gen-
erally robustly localized to the upper banks of the superior temporal gyrus
in both hemispheres (Liitkenhdner and Steinstrater, 1998). For each sub-
ject, the 40 strongest channels at the peak of the M100 (20 in each hemi-
sphere) were considered to best reflect activity in the auditory cortex, and
these were selected for the RMS (root mean square) analysis below.

In the main experiment, the evoked response analysis was time
locked to the offset of the last tone of a sequence. The analysis epochs
were 1750 ms duration, including a 1000 ms pre-offset period. The
data were baseline corrected to the 600-750 ms post-offset period (no
sounds were present in that interval) and low-pass filtered at 30 Hz. A
denoising source separation (DSS) procedure was employed, over data
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from all 274 sensors, to find the most reproducible linear combination
of sensors across trials (de Cheveigné, 2010; de Cheveigné and Parra,
2014). The first DSS component, i.e. the most reproducible component
in the recorded brain activity, was projected back to the data and used
for subsequent analysis. Since the analysis is based on a single DSS com-
ponent, the temporal dynamics of the response are identical across
channels (channels only differ in overall amplitude). In order to mean-
ingfully summarize the data across subjects and for display purposes,
we chose to present the data from the auditory channels as these gener-
ally exhibited the highest amplitude. Source analysis (see below) was
based on all channels.

The individual RMS (root mean square) time series of the field
strength across the 20 best auditory channels for each hemisphere
(determined by the functional localizer), was calculated for each condi-
tion and participant. The time course of the RMS, reflecting the instanta-
neous amplitude of neural responses, is employed as a measure of the
dynamics of the brain response. The congruity of the time course of
activation across subjects was evaluated using the bootstrap method
(Efron and Tibshirani, 1993; 1000 iterations, balanced), based on the in-
dividual RMS time series.

For illustration purposes, the group-RMS (RMS of individual subject
RMSs) time series are plotted, but statistical analysis was always per-
formed on peak latencies extracted from each subject's data. Latencies
of offset responses were estimated by determining, for each participant
and condition, the latency corresponding to the maximum value within
a 100 ms window around the grand-RMS peak. As a measure of cross-
subject variability, latency histograms were computed by an iterative
bootstrap-based procedure where, on each iteration, RMS time series
of 5 subjects were randomly chosen (with replacement), the grand-
RMS computed, and the latency of the relevant peak determined
based on a 100 ms window defined around the grand-RMS peak of
the full data set. The iterative process (1000 iterations) generated laten-
cy histograms (Fig. 4B, bottom) from which the mean latency and its
variability can be estimated. Occasionally, when a peak is not present
(e.g. this occurred for some subjects in Experiment 2) the peak latency
determination procedure would select a point at the edge of the
window. This was allowed, and is reflected in higher variability, across
subjects (larger error bars or wider distributions), in the relevant condi-
tions (e.g. I01225 condition in Experiment 2).

Offset response latencies in Experiment 1 (see Results) are used as a
benchmark against which data from Experiments 2 and 3 are compared.
Statistical analysis involves mixed design repeated measure ANOVAs
with 10l condition as a within-subject measure and experiment as
between-subject measure. These are followed by (Bonferroni
corrected) post hoc analyses to assess any significant main effects.
The Greenhouse-Geiser correction was used when required. Homoge-
neity of variance was assessed with Levene's test. The single instance
in which this test indicated potential differences is between Exp2a
and Exp2b (as expected due to the very different subject numbers;
and as evident from Fig. 3). In all other cases there was no evidence of
differences (p > 0.133 for all).

To ‘blindly’ identify the sources of the evoked activity, the multiple
sparse priors (MSP) method, with group constraints, was used
(Friston et al., 2008; Litvak and Friston, 2008; Litvak et al., 2011). Anal-
ysis was based on raw time-averaged data from all channels, low-pass
filtered at 48 Hz. The inversion time window encompassed the entire
epoch. Subsequently, two 50 ms time intervals were defined for analy-
sis: (i) around the grand-average offset peak (see yellow circle in Fig. 2)
and (ii) around a pre-offset interval (100 ms before sequence offset; see
grey circle in Fig. 2). This enabled the identification of sources active
during sequence processing, during offset processing, and those activat-
ed more during offset than while listening to the ongoing pattern (or
vice versa). The resulting source estimates were averaged over that
interval, projected to a three-dimensional source space, smoothed
(isotropic Gaussian kernel of 5 mm full-width at half-maximum) to
create images of source activity for each subject, and then taken to the

2nd level. The statistical analysis was conducted using the general linear
model as described by Friston et al. (1995). The results were overlaid on
a ch2.nii.gz atlas using MRIcron software (http://www.mricro.com/
mricron/install.html). The brain areas that correspond to the stereotac-
tic Montreal Neurological Institute (MNI) coordinates were identified
using xjView toolbox (http://www.alivelearn.net/xjview8/).

Results

The analysis is focused on the latency of offset responses (‘when does
the brain ‘realize’ that the sequence has ended?’), a measure relatively
neglected in previous work. As discussed above, if the brain is able to
learn the structure of the ongoing sequence an offset (non-arrival of
an expected event) will be detected more rapidly (and with greater con-
sistency across trials). Hence we argue that offset response latencies
should be a major parameter of interest when probing sensitivity to
time. Comparing latency across conditions enabled us to test straightfor-
ward predictions about whether and how the auditory brain represents
sequence timing and also affords a clear measure of computational effi-
ciency. For descriptive purposes group RMS data (across subjects) are
presented (Figs. 2, 4A) but the statistical analysis is performed on peak
latencies measured from each subject's data as described in the
Materials and methods section.

Experiment 1 — unattended isochronous sequences

The stimuli in Experiment 1 were isochronous tone-pip sequences
with inter-onset intervals (IOI) of 75, 125 or 225 ms. The stimulus
set also contained long pure tone stimuli (‘CONT’), used to estimate
the latency of simple offset responses. Fig. 2A shows the recorded
brain responses to each of the 4 experimental conditions, time-locked
to stimulus offset (dashed line; this corresponds to the offset of the
long pure tone in the CONT condition or the offset of the last tone-pip
in the tone-pip sequences). Plotted is a 1750 ms epoch from 1000 ms
before to 750 ms after the offset. Responses to all stimuli show a gradual
decrease in amplitude, attributable to the effects of adaptation, suggest-
ing that these processes continuously shape brain responses even in rel-
atively long sound sequences. The response to the offset of a long pure
tone (CONT) is manifested as an abrupt drop in the sustained response
which is followed by an ‘offset peak’ (see purple arrow). Responses to
the offset of the tone sequences show similar, but delayed, patterns
(see red, green, blue arrows). In the slower sequences (101125 and
[01225) responses to individual tones are visible in the pre-offset inter-
val, with a prominent ‘offset peak’ arising around the time the non-
arriving tone is expected to occur. These responses demonstrate that
the auditory brain codes the offset of sound patterns (‘second order
transient’) in addition to onsets and offsets of single tones (see also
Yamashiro et al,, 2009; Hughes et al., 2001).

This work focuses on the latencies of these offset responses. An ideal
observer is expected to detect the offset of the sequence once the appro-
priate silent duration has elapsed. The measured responses reveal such
a pattern with offset peaks occurring progressively later in time. The
mean latencies are: CONT = 95 ms, 10175 = 195 ms, 101125 =
227 ms, [01225 = 317 ms. To evaluate 10l learning, the relevant silent
duration was subtracted from the measured offset-peak latency,
resulting in a “corrected” offset latency for each condition (see Fig. 4B;
orange bars). These latency data will be used as a benchmark against
which to compare data from the non-isochronous sequences, in Exper-
iments 2 and 3.

An ideal observer account would predict that, after the correction, all
offset response latencies should be identical. This pattern is partially ob-
served: A repeated measures ANOVA showed a main effect of condition
(F(1.457,13.115) = 13.401; p < 0.001). Post hoc, Bonferroni corrected,
pairwise comparisons indicated a significant difference between CONT
and I0I75 (p < 0.0001), CONT and IOI125 (p = 0.006) and I0I75 and
[0I125 (p = 0.001). There was no significant difference between
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Fig. 2. Results of Experiment 1. A: Measured brain responses (group RMS), time-locked to the offset of the last tone (0 ms). Offset responses are indicated with arrows. B: Focus on the
I0I = 225 ms condition. Right: evoked response. White bars indicate the ultimate 5 tones in the sequence. An offset response (yellow circle) is generated shortly after the expected
time of arrival of the missing tone (red dashed line). The response to the last audible tone is reproduced over the response to the missing tone (white dashed curve) to facilitate comparison
of response dynamics. Source localization results for that condition are on the left. Plotted are t-maps overlaid on a ch2.nii.gz atlas. Significant clusters for the offset peak > pre-offset (in-
dicated by grey dot) are in superior temporal gyrus (STG) and post-central gyrus (PCG), bilaterally. See also Table 1.

101225 and the other conditions (p = 0.194, 0.125 and 1.00 respectively).
While the statistics are not entirely conclusive on this point, there ap-
pears to be an overall ~25 ms delay between the corrected latencies of
the different I0I conditions and that of CONT (see dashed line in
Fig. 4B). This potentially reflects the extra computational demands re-
quired for detecting the offset of a sequence (reacting to an expected,
but non-arriving tone-pip) relative to the much simpler task of detecting
the drop in power associated with the termination of a continuous pure
tone.

Fig. 2B focuses on the slowest condition (I01225) as this is closest to
the time scales studied in recent investigations (Fujioka et al., 2012;
Lakatos et al., 2013). The timing of the 5 last tones in the sequence are
marked on the x-axis and the brain data demonstrate reproducible
response dynamics to each tone, commensurate to those reported for
longer I0Is (390 ms in Fujioka et al., 2012; 600 ms in Lakatos et al.,
2013). When a tone fails to arrive (red dashed line), the drop in ampli-
tude, which always occurs shortly after tone onset does not ensue and
an offset peak is generated soon after (yellow dot). A response to the
last tone in the sequence (dashed grey line) is reproduced above the
‘missing tone’ response to facilitate comparison of these temporal
dynamics.

MSP source analysis was used to ‘blindly’ identify the neural sub-
strates involved in coding the tone sequence. The analysis was applied
at two time points — offset (location indicated by the yellow dot in
Fig. 2B) and at pre-offset (grey dot in Fig. 2B), before the arrival of the
last tone. The group data are shown in Fig. 2B (see also Table 1 for coor-
dinates and t values). The analysis identified 2 cortical foci as contribut-
ing to the offset peak: The Superior temporal gyrus (STG) in auditory

cortex, and the post central gyrus (PCG) in the parietal lobe. Activation
in those areas contributed to coding the on-going sequence (pre-offset;
see Table 1) and was also found to increase during offset processing
relative to the pre-offset base line (repeated samples t test for offset
peak > pre-offset; Fig. 2B). The contrast pre-offset > offset yielded no
activations. The activation patterns in all individual subjects were con-
sistent with the group results. In 5 of the subjects we also identified ac-
tivation in the inferior frontal gyrus (IFG). Overall, the source analysis
data are consistent with previous reports (e.g. Fujioka et al, 2012) in
suggesting that a parieto-temporal network supports the process of
representing the temporal pattern in a sequence and is also activated
(possibly together with IFG sources) when a violation occurs. Impor-
tantly this pattern of activation occurred even when subjects were not
actively detecting the offsets.

Experiment 2 — unattended regular but non-isochronous sequences

Experiment 2 investigated whether the auditory system is capable of
learning more complex repeating patterns by using tone sequences in
which different IOIs (same as those in Experiment 1) are repeated reg-
ularly (Fig. 1B). Crucially, the overall number of presentations of each
101 was the same as in Experiment 1. Two versions of the experiment
were run. In the first (Experiment 2a; 15 listeners), the stimulus se-
quences consisted of two possible permutations of the 3 10Is. To deter-
mine whether the delayed offset responses which were observed in this
experiment (see more below), were related to the use of two different
I0I orders, the experiment was repeated (control Experiment 2b; 5
listeners) using only one of the possible permutations. Overall session
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Table 1
Source localization results for Experiment 1.

Brain area Hemisphere x y z t-Value p

Experiment 1, pre-offset

Parietal lobe, postcentral gyrus  Left —40 —38 52 455 0.001

Parietal lobe, postcentral gyrus  Left —38 —38 60 4.55 0.001

Parietal lobe, postcentral gyrus  Left —60 —18 24 4 0.002

Parietal lobe, supramarginal Left —58 —50 26 4.73 0.001
gyrus

Temporal lobe, superior Left —60 —32 14 413 0.001
temporal gyrus

Occipital lobe, cuneus Left —2 —96 4 391 0.002

Occipital lobe, cuneus Left —6 —80 30 3.07 0.007

Parietal lobe, postcentral gyrus ~ Right 38 —36 60 4.92 0

Parietal lobe, postcentral gyrus  Right 60 —22 26 4.01 0.002

Temporal lobe, superior Right 54 —36 14 485 0
temporal gyrus

Temporal lobe, superior Right 62 —38 16 4.7 0.001
temporal gyrus

Occipital lobe, cuneus Right 8 —84 32 3.08 0.007

Experiment 1, post-offset

Parietal lobe, postcentral gyrus  Left —38 —38 60 2.86 0.009

temporal lobe, superior Left —56 —40 14 3.49 0.003
temporal gyrus

Parietal lobe, postcentral gyrus  Right 38 —36 60 2.86 0.009

Temporal lobe, superior Right 54 —32 6 35 0.003
temporal gyrus

Experiment 1, post-offset > pre-offset

Temporal lobe, superior Left —56 —40 14 3.11 0.006
temporal gyrus

Parietal lobe, postcentral gyrus ~ Right 34 —38 60 2.26 0.025

Temporal lobe, superior Right 56 —34 6 241 0.02

temporal gyrus

duration was kept constant thus Experiment 2b comprised twice as
many trials of each IOI condition. These manipulations did not appear
to have an effect on offset latency. A comparison of the latencies in the
two versions of Experiment 2 is shown in Fig. 3. A mixed design
ANOVA, with IOI condition as a within-subject factor, and version
(Exp2a or Exp2b) as a between-subject factor revealed a main effect
of condition (F(3,54) = 55.669; p < 0.0001) but no effect of experiment
version (F(1,18) = 0.278; p = 0.604). An additional mixed design
ANOVA, including the data from Experiment 1, revealed a main effect
of condition (F(3,81) = 67.318; p < 0.0001) and a main effect of experi-
ment (F(1,27) = 6.62; p < 0.0001). Post hoc, Bonferroni corrected, com-
parisons suggested a significant difference between Exp1 and both
versions of Exp2 (p = 0.001 for both) and no difference between the
two versions of Exp2 (p = 1.0). Overall, this outcome suggests that diffi-
culty in learning non-isochronous regular sequences, manifested as
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Fig. 3. Comparison of offset latencies obtained in Experiment 2a (two possible IOl permu-
tations) and Experiment 2b (one IOl permutation). No significant difference indicates that
increased offset latency in Experiment 2 is not due to pattern variability.

delayed responses relative to those estimated for isochronous sequences,
is not due to the complexity or variability of the pattern. Therefore, the
latency analysis in Fig. 4 and subsequent comparisons with Experiment
3, below, pool across Experiment 2a and Experiment 2b data.

Fig. 4A (dark blue lines) shows the observed offset response pattern
in Experiment 2 (for comparison with Experiment 3; see more below).
The data for the CONT condition are similar to Experiment 1 and there-
fore not shown. The figure plots mean (grand-RMS across subjects) re-
sponses to the different IOl conditions as well as the RAND condition (in
black), where the order of I0Is was random. Clear offset responses are
visible in the regular 10175 and I0I125 ms conditions (see arrows), but
not in the 101225 ms condition, where the data revealed substantial
inter-listener variability (see also histogram plots in Fig. 4B) and
hence no stable peak in the group-RMS. An offset peak is also not visible
in the RAND condition (as expected, since these sequences lack a
predictable temporal structure).

Fig. 4B displays the mean peak latencies and mean peak latency
distributions across conditions and experiments (see Materials and
methods). A comparison between the results of Experiment 2 (dark
blue lines) and Experiment 1 (Orange lines) suggests that while there
is no difference in response latencies in the CONT condition, offset
peak latencies for I0175 and 101225 are significantly increased. Consis-
tent with this observation, a mixed design repeated measures ANOVA
on offset latencies, with experiment (Exp1 and Exp2) as between-sub-
jects factor and condition as within-subject factor demonstrated a
main effect of condition (F(3,84) = 59.333; p <0.001), and an interac-
tion between experiment and condition (F(3,84) = 8.969; p < 0.001).
An independent samples t test confirmed significant difference between
the 10175 and 101225 conditions across the two experiments (p < 0.001
and p = 0.001, respectively) and no difference for the other two condi-
tions CONT and I0I125; p > 0.434).

Hence, the results suggest that, at least when the signals are not
behaviourally relevant, cortical offset responses reveal sluggish learning
of temporal structure in (relatively simple) non-isochronous, regular
sequences. It must be stressed that offset responses are still generated
by most subjects in most conditions, indicating that some learning of se-
quence structure does take place automatically but that interval coding
(and hence ability to rapidly detect the offset of a sequence) is markedly
less precise than that for isochronous sequences. In both the 10175 and
101225 conditions, offset responses are slower (relative to the isochro-
nous conditions in Experiment 1) by about 30-40 ms and cross-subject
latency distributions are wider (Fig. 4B).

Notably, performance on the [01125 condition is relatively preserved
(Fig. 4B; Experiment 1 and Experiment 2 mean latencies are not signif-
icantly different, despite some widening in the cross-subject latency
distribution). This is likely a result of the fact that this interval is accen-
tuated in our sequences and therefore more perceptually salient than
the other two IOIs (more below).

Experiment 3 — attended regular non-isochronous sequences

This experiment investigated I0I coding when the sequences are
made behaviourally relevant. The same regular sequences as in Experi-
ment 2, above, were used but in the context of a task where listeners
were required to monitor the tone pips for occasional frequency devi-
ants (Fig. 1D). Importantly, attention was not directed to sequence off-
set but rather equally distributed over the entire duration and the
detection task was an implicit timing task (Coull and Nobre, 2008), not
requiring overt processing of I0I duration. The mean hit rate was 88%
(stde = 2.8%), with a low false positive rate (0.4%, stde = 0.16%).
Group-RMS offset responses are plotted in Fig. 4A (light blue) and
mean offset response latencies are in Fig. 4B (light blue). Clear mean off-
set responses are observed in all IOl conditions (see light blue arrows in
Fig. 4A) and a comparison with the data from Experiment 2 suggests
that these occur significantly earlier. A mixed design repeated measures
ANOVA on offset peak latencies, with experiment (Experiment 2 vs.
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Fig. 4. Results of Experiments 2 and 3 (regular non-isochronous sequences) A: Evoked responses (group RMS) to each of the IOl conditions (and the RAND sequence) in Experiment 2 (dark
blue) and Experiment 3 (light blue). 0 ms = offset of the last tone; arrows indicate offset responses (no offset responses were visible in the grand RMS of the I0I = 225 ms condition in
Experiment 2). Dashed lines indicate the presentation time of the last 8 tones in the sequence. The next expected (non-arriving) tone is shown in red. Overall the activation patterns in-
dicate significantly delayed offset responses when the sequences are not actively attended. B: Offset response latencies across the three experiments. Top: mean latencies across subjects
(corrected by subtracting relevant silent duration from raw RT). Dashed line shows the latency of the CONT conditions, for comparison. IOIs presented in the context of a regularly repeat-
ing, non-attended, pattern (Experiment 2) are associated with significantly increased offset latencies, indicating a marked reduction in coding accuracy. Once the sequences are made per-
ceptually pertinent (though listeners were not explicitly attending to temporal structure; Experiment 3) latencies shorten considerably, approaching those measured for isochronous
sequences (Experiment 1). Bottom: (raw) latency histograms computed iteratively using Bootstrap (Efron and Tibshirani, 1993). C: Localization results for the IOl = 225 ms condition
in Experiment 3. Plotted are t-maps overlaid on a ch2.nii.gz atlas. Significant clusters for the offset peak > pre-offset are in superior temporal gyrus (STG), middle/inferior frontal gyrus
(M/IFG) and the parietal lobe (PL) bilaterally encompassing the post-central gyrus (PCG), and the inferior parietal lobule (IPL). See also Table 2.

Experiment 3) as a between subjects factor and condition as within-
subject factor demonstrated a main effect of condition (F(3,90) =
97.986; p < 0.001), and an interaction between experiment and condi-
tion (F(3,90) = 7.001; p < 0.001). An independent samples t test con-
firmed significant difference between the 10175 and 101225 conditions
across the two experiments (p = 0.034 and p < 0.001, respectively)
and no difference in the CONT and 101125 conditions (p = 0.741 and
p = 0.806, respectively). This pattern of results suggests, therefore,
that when the sequences are made perceptually relevant, coding of
temporal structure improves significantly, resulting in faster offset
detection.

The procedure for source analysis is identical to that described for
Experiment 1. The analysis identified 3 cortical foci which contribute
to the offset peak (i.e. more active at the time of the offset peak, relative
to a pre-offset interval; Fig. 4C): The Superior temporal gyrus (STG) in
auditory cortex, postcentral gyrus (PCG) in the parietal lobe extending
onto the inferior parietal lobule (IPL) and the precentral gyrus (M1),
and the middle frontal gyrus (MFG) extending onto the inferior frontal
gyrus (IFG). Activation in those areas contributed to coding the ongoing
sequence (see Table 2) and was also found to increase at offset relative
to the pre-offset interval. Overall the cortical network identified for the
regular sequences is very similar to the one outlined for isochronous
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Table 2

Source localization results for Experiment 3.
Brain area Hemisphere X y z t-Value p
Experiment 3, pre-offset
Parietal lobe, postcentral gyrus Left —52 —26 14 6.74 0
Parietal lobe, postcentral gyrus Left —64 —14 18 427 0.001
Parietal lobe, precuneus Left —18 —78 38 2.8 0.009
Parietal lobe, sub-gyral Left —38 —34 48 6.36 0
Frontal lobe, precentral gyrus Left —28 —32 56 6.43 0
Frontal lobe, superior frontal gyrus Left -8 —10 68 443 0.001
Occipital lobe, lingual gyrus Left —6 —88 —10 4.59 0
Occipital lobe, lingual gyrus Left —20 —78 —10 4.28 0.001
Occipital lobe, cuneus Left —8 —80 30 2.84 0.008
Parietal lobe, sub-gyral Right 38 —36 48 5.82 0
Temporal lobe, superior temporal gyrus Right 62 —38 20 43 0.001
Frontal lobe, precentral gyrus Right 62 —8 12 5.06 0
Frontal lobe, medial frontal gyrus Right 8 —14 68 443 0.001
Frontal lobe, middle frontal gyrus Right 30 28 38 297 0.006
Frontal lobe, inferior frontal gyrus Right 50 26 0 233 0.02
Occipital lobe, lingual gyrus Right 16 —80 —12 429 0.001
Occipital lobe, cuneus Right 10 —78 30 297 0.006
Experiment 3, post-offset
Parietal lobe, postcentral gyrus Left —36 —32 56 4.87 0
Parietal lobe, postcentral gyrus Left —50 —24 16 499 0
Parietal lobe, precuneus Left —18 —80 40 2.79 0.009
Parietal lobe, sub-gyral Left —40 —34 46 3.7 0.002
Temporal lobe, middle temporal gyrus Left —56 —14 —14 4,54 0
Frontal lobe, precentral gyrus Left —26 —32 58 521 0
Frontal lobe, middle frontal gyrus Left —46 20 30 2.68 0.011
Frontal lobe, sub-gyral Left —38 18 26 2.68 0.011
Frontal lobe, superior frontal gyrus Left -8 —10 68 248 0.015
Occipital lobe, lingual gyrus Left —8 —90 —12 345 0.003
Occipital lobe, lingual gyrus Left —18 —76 —12 3.04 0.006
Parietal lobe, postcentral gyrus Right 52 —18 16 4.45 0
Parietal lobe, sub-gyral Right 26 —40 52 3.76 0.002
Parietal lobe, inferior parietal lobule Right 48 —48 46 3.07 0.005
Parietal lobe, supramarginal gyrus Right 58 —40 30 3.14 0.005
Parietal lobe, precuneus Right 20 —82 40 2.83 0.008
Frontal lobe, precentral gyrus Right 60 —6 14 4,52 0
Frontal lobe, middle frontal gyrus Right 46 16 28 2.75 0.009
Frontal lobe, medial frontal gyrus Right 8 —14 68 2.53 0.014
Occipital lobe, lingual gyrus Right 14 —80 —12 2.96 0.006
Experiment 3, post-offset > pre-offset
Parietal lobe, postcentral gyrus Left —22 —30 58 4.59 0
Parietal lobe, postcentral gyrus Left —32 —34 54 412 0.001
Parietal lobe, postcentral gyrus Left —54 —24 16 4.16 0.001
Parietal lobe, postcentral gyrus Left —60 —18 20 3.8 0.001
Parietal lobe, inferior parietal lobule Left —46 —42 48 3.16 0.005
Frontal lobe, middle frontal gyrus Left —46 20 30 2.7 0.01
Frontal lobe, sub-gyral Left —38 18 26 271 0.01
Parietal lobe, precuneus Right 20 —82 40 241 0.017
Parietal lobe, postcentral gyrus Right 60 —20 20 3.82 0.001
Parietal lobe, postcentral gyrus Right 22 —-30 58 2.85 0.008
Parietal lobe, sub-gyral Right 32 —32 48 3.13 0.005
Parietal lobe, inferior parietal lobule Right 48 —48 46 293 0.007
Temporal lobe, superior temporal gyrus Right 58 —34 8 244 0.016
Frontal lobe, precentral gyrus Right 60 —4 24 2.81 0.008
Frontal lobe, middle frontal gyrus Right 46 16 28 2.77 0.009

sequences in Experiment 1 (and in e.g. Fujioka et al., 2012). An impor-
tant caveat is, however, that MEG tends to be relatively insensitive to
deep (sub-cortical) sources, and these might be differentially activated
for isochronous and non-isochronous sequences (Grahn, 2012).

Comparison across the three experiments

A grand ANOVA across the three experiments revealed an interac-
tion between experiment and condition (F(4.923,95.989) = 6.763;
p = 0.002). A post hoc (Bonferroni corrected) test demonstrated a sig-
nificant difference between Experiments 1 and 2 (p = 0.032) and be-
tween Experiments 2 and 3 (p = 0.003) with no difference between
Experiments 1 and 3 (p = 1.0). Similarly, a series of univariate ANOVAs

(for each condition separately) demonstrated no effect of experiment
on CONT (F(2,39) = 0.377; p = 0.689), and 101125 (F(2,39) = 0.076;
p = 0.927) but a significant effect on 10175 (F(2,39) = 13.074; p <
0.0001) and I01225 (F(2,39) = 12.712; p < 0.0001). Post hoc tests for
I0175 show a significant difference between Exp1 and Exp2 (p =
0.02) and a significant difference between Exp1, Exp2 and Exp3 (p =
0.016 and p < 0.0001, respectively) indicating that while the mean la-
tency in Exp3 is closer to that in Exp1 brain responses are still sluggish
in that condition (attended regular sequences) relative to isochronous
sequences. For 101225, post hoc tests show a significant difference be-
tween Exp1 and Exp2 (p <0.0001) and Exp2 and Exp3 (p < 0.0001)
but no difference between Exp1 and Exp3 (p = 0.957), suggesting
that attention restored the interval estimates back to those measured
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for isochronous sequences. This pattern is also evident in the latency
distribution plots (Fig. 4B, bottom), computed using bootstrap resam-
pling (see Materials and methods).

The attentional demands of the visual decoy task are low. The im-
ages are presented at a measured rate and their comparison is straight-
forward — leaving ample perceptual/computational resources to devote
to the auditory stimuli. Despite this, the pattern of results across Exper-
iments 2 and 3 suggests that accurate temporal pattern learning takes
place only when the acoustic sequences are actively attended.

That CONT offset latencies are constant across experiments is
perhaps not surprising — simple (first order) offset responses likely rely
on automatic processes (Phillips et al., 2002; Scholl et al., 2010) and
hence not affected by attention. However, the finding that the 101125
condition was not affected by these manipulations is not trivial. A likely
explanation is that, due to the beat structure of the regular sequences,
this interval was subjectively accentuated and therefore ‘popped out’
even in Experiment 2, when the sequences were not actively attended,
resulting in accurate duration coding (indeed such an account is consis-
tent with the 3 stage clock model; Brochard et al., 2003; see also Povel
and Essens, 1985; Povel and Okkerman, 1981).

Discussion
Sensitivity to time

Accumulating evidence demonstrates that listeners, including new-
borns (Winkler et al., 2009), are sensitive to the timing of sound
sequences and form expectancies about future temporal events. When
exposed to on-going regular patterns, brain responses reflect temporal
orienting in preparation to process expected events (Lange, 2013; but
see Schwartze et al,, 2011). Behaviourally, the consequence of these
processes is that expected events (within a regular temporal context)
are responded to more rapidly than those occurring in a temporally ir-
regular pattern (Barnes and Jones, 2000; Ellis and Jones, 2010) and are
associated with increased sensitivity (Geiser et al., 2012; Jones, 1976;
Tavano et al, 2014). Imaging work (though using relatively simple
sound patterns) suggests that this sensitivity does not necessarily
require explicit attention to sequence timing (Hughes et al., 2001;
Karamiirsel and Bullock, 2000; Yamashiro et al., 2009). Indeed, the pre-
ceding temporal context often affects performance even when it is in
the listeners' best interest to ignore it.

In theory, and especially within the framework of predictive-coding,
recently attracting considerable attention (Wacongne et al., 2011;
Nelken, 2012; Clark, 2013; Friston, 2005), any regularly repeating tem-
poral structure should be learnable as long as the system has the capac-
ity, and sufficient opportunity, to accumulate the relevant statistics.
Probing the limits of this learning, viz. understanding which temporal
patterns are acquired and under what conditions, should thus provide
a key handle onto the neural computations underlying sensitivity
to time. However, work thus far has used only very simple (mostly
isochronous) and slow (<4 Hz) temporal patterns. The purpose of this
series of experiments was to measure sensitivity to temporal patterning
in non-isochronous sequences and at fast rates, pertinent to natural
sources (Rosen, 1992; Shamma and Micheyl, 2010; Andreou et al.,
2011).

The paradigm is based on probing brain responses to offsets of tone-
pip sequences. Using simple (isochronous) regular sequences and a
more complex variant where three different inter-onset-intervals alter-
nate in regular succession, we demonstrate that offset responses — de-
flections occurring after the non-arrival of an expected tone — are
present in the evoked response (see also, Yamashiro et al., 2009).
These deflections, or ‘second order transients’ are specific to regular pat-
terning (not observed in a random control sequence) suggesting that
the auditory system is sensitive to the temporal structure of on-going
sound input and registers when it is violated. It is hypothesized that
the neural computations supporting this sensitivity involve learning

the order of I0Is in the sequence, anticipating upcoming IOIs, and signal-
ling a violation when an expected tone fails to arrive.

Offset responses as indicators of temporal pattern learning

The pattern of offset latencies over the three experiments report-
ed here demonstrates that: (a) Overall, the brain consistently
underperforms for the shortest (10175 ms) interval (see also Zanto
et al., 2006), as reflected in relatively (compared to the other IOl condi-
tions) long corrected latencies and weaker facilitation by attention. This
is despite that many natural sounds, including speech, contain, what is
thought to be, perceptually relevant temporal information in this range.
(b) IOIs presented in the context of a regularly repeating pattern are as-
sociated with significantly increased offset latencies, relative to IOIs
within an isochronous sequence, indicating a marked reduction in cod-
ing accuracy. (c) Once the sequences are made perceptually pertinent
(and even when temporal structure is not explicitly attended) latencies
shorten significantly, approaching those measured for isochronous
sequences.

Source analysis revealed a network of temporal (focus around STG),
frontal (MFG, IFG) and parietal (encompassing postcentral gyrus and
the inferior parietal lobule) sources in coding the temporal properties
of ongoing sound sequences and their violation. This is consistent with
findings in the neuroimaging (Grahn, 2012; Chen et al., 2008a; Martin
et al., 2008; Coull and Nobre, 2008), intra-cranial recordings (Hughes
et al., 2001) and electrophysiology (Leon and Shadlen, 2003; Rao
et al., 2001; Janssen and Shadlen, 2005) literature, indicating an
association of parietal cortex with temporal processing. MFG/IFG activa-
tions are often observed in the context of deviance detection (Tse et al.,
2006; Doeller et al., 2003; Schénwiesner et al., 2007) and expectancy
(e.g. Osnes et al., 2012; Doricchi et al., 2010; Seger et al., 2013; Grahn,
2012) as well as working memory and rule generation (Chen et al.,
2008b) — all processes that are consistent with computations required
for offset detection. Importantly, our results suggest that isochronous
and non-isochronous regular sequences involve processing in the
same cortical foci (with a caution that sub-cortical structures, which
might be differentially engaged, are difficult to resolve with MEG;
Grahn, 2012; Grahn and Rowe, 2009).

In contrast to many reports of motor cortex activations during pas-
sive listening to temporal patterns (Grahn, 2012; Fujioka et al., 2012;
Zatorre et al., 2007) only a small extent of such activation was recorded
here. This might be because motor cortex involvement, which is thought
to reflect sensory-motor synchronization (e.g. for motor planning), only
occurs for slower rates (I0I > 200 ms), above the biomechanical limit.
The rates here were mostly outside of this range.

Representation of time in the auditory brain

Various mechanisms have been proposed to account for temporal
structure learning (Coull, 2009; Grahn, 2012; Merchant et al., 2013).
Currently receiving significant attention are a family of entrainment
models (Barnes and Jones, 2000; Arnal and Giraud, 2012; Schwartze
and Kotz, 2013), according to which the brain ‘locks’ to the temporal
structure of the input and the resulting neural oscillations (periodic in-
creases in excitability) underlie the effects of time-dependant perfor-
mance and prediction. Recent reports are largely consistent with this
premise. Fujioka et al. (2012) demonstrated periodic modulation in
the beta-band that anticipates the occurrence of repeatedly presented
tone-pips (see also Snyder and Large, 2005). Lakatos et al. (2013),
using neuronal ensemble recordings in A1 of behaving monkeys, re-
corded sub-threshold oscillatory activity reflecting entrainment to an
isochronous sequence. The dynamics of that response were very similar
to those observed in humans by Fujioka et al. (2012).

Interestingly, Lakatos et al. (2013), revealed that neural oscillations
entrained to an isochronous tone-pip sequence continue to exhibit
structured rhythmic excitability fluctuations for at least 4 s after the
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sequence has ended, with no evidence of offset responses. This suggests
that the offset response (=change detection) system is, to some extent,
decoupled from the entrainment mechanism, consistent with our local-
ization results which identified sources in STG (non-primary auditory
cortex) but not in Al.

Itis presently unclear how the mechanisms identified by e.g. Lakatos
et al. (2013), might extend to non-isochronous regular sequences as
used here. One possibility is that acquisition is accomplished by a number
of independent oscillators, all with the same period but a different phase
such that each is entrained to successive tones in the pattern, resulting
in implicit coding of temporal order. MEG is unlikely to be sufficiently
sensitive for revealing such oscillator populations but they should be
discernible with electrophysiological means. Alternatively, the observed
learning could be accomplished within ‘classically postulated’ clock-
based interval timing mechanisms (Gibbon et al., 1984; Keele et al.,
1989; Rao et al., 2001; Teki et al.,, 2011) coding interval duration (and
their order) explicitly.

Isochronous sequences, or those confirming to an exact metrical
hierarchy, possess a special perceptual status (Grube and Griffiths,
2009), possibly underpinned by an automatic striato-thalamo-cortical
network (Teki et al., 2011; Grahn and Rowe, 2009). It has been hypothe-
sized that non-metrical regular sequences are not represented precisely
but ‘regularized’ toward the nearest metrical pattern (Motz et al., 2013).
However, the present data are not consistent with such an account be-
cause the same sequences, when made perceptually pertinent, are associ-
ated with nearly accurate coding. Instead, our data suggest that the
limiting factor might not be a computational one but rather that, save
for isochronous patterns, listeners only precisely acquire temporal struc-
ture when it is immediately perceptually relevant. Thus, perhaps surpris-
ingly, timing information despite its key importance for predicting
event occurrence and facilitating efficient interaction with one's sur-
roundings, does not appear to be extracted robustly when outside of the
focus of attention.
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