43 research outputs found

    Successful treatment of a child with vascular pythiosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human pythiosis is an emerging and life-threatening infectious disease caused by <it>Pythium insidiosum</it>. It occurs primarily in tropical, subtropical and temperate areas of the world, including Thailand. The aim of this report is to present the first pediatric case of typical vascular pythiosis.</p> <p>Case Presentation</p> <p>A 10-year-old boy with underlying β-thalassemia presented with gangrenous ulcers and claudication of the right leg which were unresponsive to antibiotic therapy for 6 weeks. Computerized tomography angiography indicated chronic arterial occlusion involving the right distal external iliac artery and its branches. High-above-knee amputation was urgently done to remove infected arteries and tissues, and to stop disease progression. Antibody to <it>P. insidiosum </it>was detected in a serum sample by the immunoblot and the immunochromatography tests. Fungal culture followed by nucleic sequence analysis was positive for <it>P. insidiosum </it>in the resected iliac arterial tissue. Immunotherapeutic vaccine and antifungal agents were administered. The patient remained well and was discharged after 2 months hospitalization without recurrence of the disease. At the time of this communication he has been symptom-free for 2 years.</p> <p>Conclusions</p> <p>The child presented with the classical manifestations of vascular pythiosis as seen in adult cases. However, because pediatricians were unfamiliar with the disease, diagnosis and surgical treatment were delayed. Both early diagnosis and appropriate surgical and medical treatments are crucial for good prognosis.</p

    Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

    Get PDF
    Background: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. Methods: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. Results: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. Conclusions: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Microbial community structure and performance of an anaerobic reactor digestion cassava pulp and pig manure

    No full text
    Microbial community dynamics in response to changes in substrate types (i.e. pig manure (PM), cassava pulp (CP) and mixtures of PM and CP) were investigated in an anaerobic continuously stirred tank reactor (CSTR). Molecular identification of bacterial and archaeal domains were performed, using a 16S rDNA clone library with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) screening and phylogenetic analysis. Analysis of bacterial clone libraries revealed that the differences in the community structure corresponded to the substrate types. However, the Bacteroidetes were the most abundant group in all substrates, followed by the Clostridia. With pure PM, the dominant bacterial groups were Bacteroidales, Clostridia and Paludibacter. With a co-substrate, at CP to PM (CP:PM) ratio of 50:50, the sequences analysis revealed the greatest diversity of bacterial communities at class level, and the sequences affiliated with Cytophaga sp. became an exclusive predominant. With CP alone, Bacteroides sp. was the dominant species and this reactor had the lowest diversity of bacteria. Archaea observed in the CSTR fed with all substrate types were Methanosaeta sp., Methanosaeta concilii and Methanospirillum hungatei. Among the Archaea, Methanosaeta sp. was the exclusive predominant. The relative distribution of Archaea also changed regarding to the substrate types.</jats:p

    Effect of Substrate Feeding Concentration on Initial Biofilm Development in Anaerobic Hybrid Reactor

    No full text
    To elucidate the effect of substrate concentration on biofilm development, glucose concentrations of 500 and 1,000 mg/L were used.  At an early stage, biofilm development at both concentrations was not significantly different (P=0.621).  After removing suspended biomass at 24 operational hours, the biofilm development at high substrate concentration was higher than at lower concentration.  At 72 operational hours, the amounts of attached biomass at low and high glucose feeding were 9.04±1.17 and 28.58±2.72 g VSS/m2, respectively.  The activities of acidogens, acetogens, and methanogens at the low glucose concentration were 0.334, 0.016 and 0.003 g COD/g VSS/h, and those at the high glucose concentration were 0.145, 0.003 and 0.001 g COD/g VSS/h, respectively.  Moreover, the ratio of methanogenic activity at low glucose concentration was higher than at high glucose concentration.  The glucose utilization at low and high feeding concentrations was 33% and 27%, respectively.  These results indicated that rapid biofilm development by using high substrate concentration would be less beneficial if unbalance of methanogenic ratio was found in biofilm
    corecore