7,442 research outputs found

    Traffic by multiple species of molecular motors

    Full text link
    We study the traffic of two types of molecular motors using the two-species symmetric simple exclusion process (ASEP) with periodic boundary conditions and with attachment and detachment of particles. We determine characteristic properties such as motor densities and currents by simulations and analytical calculations. For motors with different unbinding probabilities, mean field theory gives the correct bound density and total current of the motors, as shown by numerical simulations. For motors differing in their stepping probabilities, the particle-hole symmetry of the current-density relationship is broken and mean field theory fails drastically. The total motor current exhibits exponential finite-size scaling, which we use to extrapolate the total current to the thermodynamic limit. Finally, we also study the motion of a single motor in the background of many non-moving motors.Comment: 23 pages, 6 figures, late

    Off-policy Q-learning: set-point design for optimizing dual-rate rougher flotation operational processes

    Get PDF
    Rougher flotation, composed of unit processes operating at a fast time scale and economic performance measurements known as operational indices measured at a slower time scale, is very basic and the first concentration stage for flotation plants. Optimizing operational process for rougher flotation circuits is extremely important due to high economic profit arising from the optimality of operational indices. This paper presents a novel off-policy Q-learning method to learn theoptimal solution to rougher flotation operational processes without the knowledge of dynamics of unit processes and operational indices. To this end, first, the optimal operational control (OOC) for dual-rate rougher flotationprocesses is formulated. Second, H∞ tracking control problem is developed to optimally prescribe the set-points for the rougher flotation processes. Then, a zero-sum game off-policy Q-learning algorithm is proposed to find theoptimal set-points by using measured data. Finally, simulation experiments are employed to show the effectiveness of the proposed method

    The activation energy for GaAs/AlGaAs interdiffusion

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at

    Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    Get PDF
    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models.status: publishe

    Models for Enhanced Absorption in Inhomogeneous Superconductors

    Full text link
    We discuss the low-frequency absorption arising from quenched inhomogeneity in the superfluid density rho_s of a model superconductor. Such inhomogeneities may arise in a high-T_c superconductor from a wide variety of sources, including quenched random disorder and static charge density waves such as stripes. Using standard classical methods for treating randomly inhomogeneous media, we show that both mechanisms produce additional absorption at finite frequencies. For a two-fluid model with weak mean-square fluctuations <(d rho_s)^2 > in rho_s and a frequency-independent quasiparticle conductivity, the extra absorption has oscillator strength proportional to the quantity <(d rho_s)^2>/rho_s, as observed in some experiments. Similar behavior is found in a two-fluid model with anticorrelated fluctuations in the superfluid and normal fluid densities. The extra absorption typically occurs as a Lorentzian centered at zero frequency. We present simple model calculations for this extra absorption under conditions of both weak and strong fluctuations. The relation between our results and other model calculations is briefly discussed

    Band structure of ZnO from resonant x-ray emission spectroscopy

    Full text link
    Soft x-ray emission and absorption spectroscopy of the O K-edge are employed to investigate the electronic structure of wurtzite ZnO(0001). A quasiparticle band structure calculated within the GW approximation agrees well with the data, most notably with the energetic location of the Zn3d - O2p hybridized state and the anisotropy of the absorption spectra. Dispersion in the band structure is mapped using the coherent k-selective part of the resonant x-ray emission spectra. We show that a more extensive mapping of the bands is possible in the case of crystalline anisotropy such as that found in ZnO.Comment: 5 pages, 5 figure

    Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria

    Get PDF
    We examine the real space structure and the electronic structure (particularly Ce4f electron localization) of oxygen vacancies in CeO2 (ceria) as a function of U in density functional theory studies with the rotationally invariant forms of the LDA+U and GGA+U functionals. The four nearest neighbor Ce ions always relax outwards, with those not carrying localized Ce4f charge moving furthest. Several quantification schemes show that the charge starts to become localized at U≈3eV and that the degree of localization reaches a maximum at ∼6eV for LDA+U or at ∼5.5eV for GGA+U. For higher U it decreases rapidly as charge is transferred onto second neighbor O ions and beyond. The localization is never into atomic corelike states; at maximum localization about 80–90% of the Ce4f charge is located on the two nearest neighboring Ce ions. However, if we look at the total atomic charge we find that the two ions only make a net gain of (0.2–0.4)e each, so localization is actually very incomplete, with localization of Ce4f electrons coming at the expense of moving other electrons off the Ce ions. We have also revisited some properties of defect-free ceria and find that with LDA+U the crystal structure is actually best described with U=3–4eV, while the experimental band structure is obtained with U=7–8eV. (For GGA+U the lattice parameters worsen for U>0eV, but the band structure is similar to LDA+U.) The best overall choice is U≈6eV with LDA+U and ≈5.5eV for GGA+U, since the localization is most important, but a consistent choice for both CeO2 and Ce2O3, with and without vacancies, is hard to find

    Multiplicity Distributions in Canonical and Microcanonical Statistical Ensembles

    Full text link
    The aim of this paper is to introduce a new technique for calculation of observables, in particular multiplicity distributions, in various statistical ensembles at finite volume. The method is based on Fourier analysis of the grand canonical partition function. Taylor expansion of the generating function is used to separate contributions to the partition function in their power in volume. We employ Laplace's asymptotic expansion to show that any equilibrium distribution of multiplicity, charge, energy, etc. tends to a multivariate normal distribution in the thermodynamic limit. Gram-Charlier expansion allows additionally for calculation of finite volume corrections. Analytical formulas are presented for inclusion of resonance decay and finite acceptance effects directly into the system partition function. This paper consolidates and extends previously published results of current investigation into properties of statistical ensembles.Comment: 53 pages, 7 figure
    • …
    corecore