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Abstract—Rougher flotation, composed of unit 
processes operating at a fast time scale and economic 
performance measurements known as operational indices 
measured at a slower time scale, is very basic and the first 
concentration stage for flotation plants. Optimizing 
operational process for rougher flotation circuits is 
extremely important due to high economic profit arising 
from the optimality of operational indices. This paper 
presents a novel off-policy Q-learning method to learn the 
optimal solution to rougher flotation operational processes 
without the knowledge of dynamics of unit processes and 
operational indices. To this end, first, the optimal 
operational control (OOC) for dual-rate rougher flotation 
processes is formulated. Second, H∞ tracking control 
problem is developed to optimally prescribe the set-points 
for the rougher flotation processes. Then, a zero-sum game 
off-policy Q-learning algorithm is proposed to find the 
optimal set-points by using measured data. Finally, 
simulation experiments are employed to show the 
effectiveness of the proposed method. 

 
Index Terms—Rougher flotation, Operational 

optimization, Q-learning, Zero-sum game, H∞ tracking 
control. 

 

I. INTRODUCTION 

OUGHER flotation processes connected by several flotation 

cells in a serial structure are composed of flotation cell 

control processes, operating at a fast time scale and 

economic benefit measurement known as operational indices 

calculated at a slow time scale. Roughing is the first and basic 

stage of flotation processes which also include cleaning, 

scavenger, regrinding and classification circuits, and its 

primary objective is to get the valuable mineral recovery as 

much as possible subject to great energy consuming. 

Optimizing economic benefit by trading off increase of 

recovery rate and decrease of energy consumption, or keeping 

it following a desired value by forcing concentrate grades and 

tail grades to proper trajectories at a fast time scale is a key 

issue. It is desired to find optimal set-points for rougher 

flotation circuits to ensure that the economic operational 

indices stay within their target ranges or at their desired target 

values like most of industrial operational processes [1-3]. 

  Most existing literature about rougher flotation processes 

mainly focused on control and optimization of the basic device 

loop, i.e., concentrate grades and tail grades are controlled or 

are optimally controlled to desired set-points [4-15]. Optimal 

control [4], adaptive control [5-7], multivariable control [8], 

expert control [9] and multivariable predictive control [10, 11] 

were developed and adopted in rougher flotation circuits. Based 

on the previous work of [11], [12], and [13], [14] presented 

multivariable model based predictive control (MPC) strategies 

with consideration of the intermediate cell grade estimates for a 

rougher circuit, such that concentrate grades and tail grades can 

follow the desired values by the optimal approach. [15] 

implemented dynamic programming to minimize the Cu tailing 

grade in each cell given a final Cu concentrate grade by 

considering phenomenological models. 

  Actually, optimal control for achieving regulation and 

optimization of the local processes and an optimization 

procedure used to generate the set-points that maximize the 

economic performance function are both involved in a general 

industrial process control scheme [16]. [17, 18] presented 

real-time optimization (RTO) based set-point compensation 

method by integrating RTO with MPC technique and applied it 

into a rougher flotation process. [19] proposed set-point 

compensation by designing feedback control strategy to 

achieve desired operational index. Note that the set-point 

compensation methods [17-19] require the dynamics of the 

rougher flotation process to be accurately known, which, in 

general, is very difficult to obtain in practical flotation 

industrial environment since there exist disturbance, chemical 

and physical reactions between ore and chemicals [1, 2]. 

Therefore, the difficulty of knowing exact models of rougher 

flotation processes motivates us to attempt data-driven  optimal 

control research for achieving optimality of dual-rate rougher 

flotation processes. 

  Neural network methods and case-based-reasoning intelligent 

control methods have been developed to design or correct 

prescribed optimal set-points for large-scale complex industrial 

processes without requiring complete knowledge of the system 

dynamics [1, 2, 20, 21]. Q-learning, one of reinforcement 

learning (RL) schemes, is also called action-dependent 

heuristic dynamic programming (ADHDP) and can be used to 

solve optimal control problems [22-24]. One of the strengths of 

Q-learning is that it has a capability of evaluating utility and 

updating control policy without requiring models of the 

environment [22-24]. Especially off-policy Q-learning 

including behavior policies and target policies is more practical 

and efficient technique compared with on-policy Q-learning 

[22-24] for dealing with optimal control problem as it can 

generate data of systems for enriching data exploration while 

the target policies are updated to find the optimal policies but 

not to be employed to systems [25, 26]. Particularly, adding 

probing noise into the behavior policy does not produce bias of 

solution when implementing policy evaluation [25]. Therefore, 
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the advantages of off-policy Q-learning also motivate us to 

attempt off-policy Q-learning research for optimal control of 

rougher flotation processes. However, to our knowledge, how 

to design off-policy Q-learning algorithm and use it to OOC 

problem of rougher flotation processes with completely 

unknown dynamics of controlled unit processes and unknown 

functional dependence of economic operational index 

generation have not been developed yet. The off-policy 

Q-learning algorithm design to achieve OOC for rougher 

flotation circuits is challenging due to dual rates and 

nonlinearities existed in complex rougher flotation circuits. 

In this paper, an off-policy Q-learning algorithm is presented 

to learn optimal set-points for rougher flotation processes using 

only measured data, such that economic benefit tracks the 

desired value by forcing the concentrate grades and tail grades 

of the lower-layer control loops to the set-points. The main 

contributions of this paper are summarized below.  
    1. Different from model-based OOC methods [17-19], a 

novel off-policy Q-learning algorithm is presented to 

approximate the solutions to the discrete-time (DT) game 

Bellman equation and learn the optimal set-points for the 

rougher flotation circuits without requiring any knowledge of 

the system dynamics.  

    2. By contrast to the neural network methods and intelligent 

control methods [1, 2, 21, 22], the proposed Q-learning 

algorithm can approximate the optimal set-point by interacting 

with the rougher flotation environment, and it is an off-policy 

RL approach wherein the target policies are evaluated and 

updated until convergence while they do not need to be applied 

to systems. In this sense, this off-policy Q-learning is more 

practical and easy to be realized for complex industrial 

applications. 

  The rest of paper is arranged as follows. Section II formulates 

OOC problem for rougher flotation processes. Section III 

constructs H∞ tracking problems for the OOC problem. Section 

IV presents an on-policy Q-learning method for achieving Nash 

equilibrium by using zero-sum game method and stability of 

the optimal solution. In Section V, an off-policy Q-learning 

algorithm is proposed to learn optimal set-points using data 

generated from rougher flotation processes. Section VI verifies 

the effectiveness of the proposed method for rougher flotation 

processes. Conclusions are stated in Section VII. 

II. OPTIMAL OPERATIONAL CONTROL FORMULATION FOR 

ROUGHER FLOTATION PROCESSES 

  In this section, the OOC problem of dual-rate rougher 

flotation process is formulated, along with lower-layer rougher 

flotation cells with fast sampling and the upper-layer economic 

benefit operational control with slow updating as shown in Fig. 

1. 

A.  Notations 

nR    n  dimensional Euclidean space 

⊗      Kronecker product 

vec( )L   Turning any matrix L into a single column vector 

diag(*)    Diagonal matrix of *   

( )r k
    

 Economic benefit at time instant k , and k  is some 

non-negative integer 
*r     Desired operational index 

l       Cell l  ( 1, 2, ,l s= ⋯ ), s  is some positive integer 
i

lpM , i

leM   Pulp mass and froth mass 

i        Mineralogical class 1, 2. 

lph ,  
la

q   Pulp level and feed flow rate 

lcgL ,  ltgL
    

Concentrate grade and Tail grade 

ag       
Feed mineral grade 

esp
Q     Frother 

colQ    Collector 

T[ ]i i

lp ll eM Mx =  State 

T[ ]lp lal hu q=    Control input  

T
[ ]l lcg ltgy L L=  Control output 

n     Sampling time instant of the lower-layer control loop,

0,1,n = ⋯  

PI controller
PI controller

PI controller

Set-points 

optimizer

⋮

espQ

*
r

ag

colQ

Operational 

index

( )r k

*

1
ˆ ( )w k *
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*ˆ ( )
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Fig. 1. Two-layer architecture for optimal operational control of rougher flotation processes  
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lp
K  and lIK  Proportional coefficient and integral coefficient 

controller gains of proportional–integral (PI) controller 

( ) ( ) ( )l l le n w n y n= −    
Tracking errors 

( )lw n
   

  Set-point 

*

lw ,
*ˆ
l

w
    

Optimal set-point  and approximate optimal set-point 

lf

x

∂
∂

, lf

u

∂
∂

, lg

r

∂
∂

, l
g

y

∂
∂

   Partial derivatives with respect to x , 

u , r  and y , respectively 

'

lp , ''

lp     First-order and second-order derivatives, respectively 

2

lf
x

∂
∂

, 
2

lf
u

∂
∂

, 
2

lg
r

∂
∂

, 
2

lg
y

∂
∂

   Second-order partial derivatives 

with respect to x , u , r  and y , respectively 

lex , leu , 
er , ley ,  ˆ

ey      Equilibrium points 

γ         Attenuation factor, 0γ >  

β        Discount factor, 0 1β< ≤  

B.  Lower-layer Rougher Flotation Process Dynamics 

  A rougher flotation process consists of several cells, whose 

nonlinear dynamics can be expressed as  

( ) ( ( ), ( ))

     ( ) ( ( ))

l l l l

l l l

x t f x t u t

y t p x t

=
=

ɺ

                               

(1) 

where ( ( ), ( ))l l lf x t u t  and ( ( ))l lp x t  are assumed to be 

second-order continuously differentiable. 

  The objective of the lower-layer loop control is to ensure the 

control output to steadily track the set-points input by the 

operational control layer. To this end, a digital output feedback 

PI controller is employed as follows: 

( ) ( ) ( )l lP l lI lu n K e n K E n= +
                       

(2) 

where 
1

1

( ) ( )
n

l l

i

E n e i
−

=

=∑  is the summation of the tracking errors, 

and  its dynamic can be expressed in the following form: 
 

( 1) ( ) ( ) ( )l l l lE n E n y n w n+ = − +                     (3) 

C.  Economic Benefit Optimization 

  Since economic benefit is closely related to the concentrate 

grade, the tail grade and the control input of rougher flotation 

process, and their relationship usually shows nonlinear feature, 

then the following nonlinear function is employed to show the 

dynamics of the economic benefit:  

 ( 1) ( ( ), ( ), ( ), ( ))
lcg stg

r k g r k k kL uL k+ =                 (4)
 

where the nonlinear function ( ( ), ( ), ( ), ( ))
lcg stg

g r k k k u kL L  is 

usually second-order continuously differentiable.   

  In order to render the economic benefit to a desired value by 

the optimal approach, the goal of this paper is to design optimal 

set-points for achieving the optimal control of the economic 

benefit by minimizing the following performance index  

* T * T

0

(( ( ) ) ( ( ) )+ ( ) ( ))k

k

J r k r Q r k r w k Rw kβ
∞

=
= − −∑

       

(5) 

where Q  and R  are positive semi-definite matrix and positive 

definite matrix, respectively. 

Remark 1: Naturally the discount factor β
 
is introduced into 

(5) since the set-point ( )w k
 
usually depends on the desired 

operational index *r  and * 0r ≠ . 

Problem 1 is presented to clearly formulate the OOC 

problem for rougher flotation circuits. 

Problem 1: 

   Control objective: 

* T * T

( )
0

min (( ( ) ) ( ( ) )+ ( ) ( ))k

k
k

r k r Q r k r w k Rw kβ
∞

=
− −∑

w
      

(6) 

Subject to (1)-(4) 

Remark 2:  It is quite hard to solve Problem 1 due to: 1) 

nonlinear dynamics constraints of the rougher flotation cells 

and the economic benefit index. 2) The dual rates, i.e., fast 

sampling rate in the lower-layer control loops and slow 

operational velocity in the upper-layer economic benefit 

operational control. 

III. H∞ TRACKING  CONTROL FOR ROUGHER FLOTATION 

PROCESSES 

  This section focuses on converting Problem 1 into H∞ 

tracking control problem for rougher flotation operational 

processes. First, the dynamics of the rougher flotation process 

operating at steady state are linearized using Taylor Series 

Expansion. Second, the lifting technique [17-19] is employed 

for dealing with the dual-rate sampling, and further solving 

OOC problem in Problem 1 is transformed as finding the 

solution of H∞ tracking control problem. 

A.  Linearization of Rougher Flotation Process  

  Since the dynamics of rougher flotation operational process 

are approximately linear near steady-state points. Thus systems 

(1) and (4) are rewritten using Taylor Series Expansion as [14, 

17-19] 

1

2

( ) ( )+ ( ) ( )

( ) ( ) ( )

l l l l l l

l l l l

x t G x t N u t d t

y t C x t d t

= +
= +

ɺ

                    

(7)

ˆ ( 1) ( )+ ( ) ( ) ( )r k Lr k My k Su k kγ+ = + +
             

(8) 

where 

2

T

1
ˆ ( ) ( ) ( ) ( ) ( )cg cg scg stgy k L Lk k k kL L =  ⋯

, 

( , )
= l le le

l

f x u
G

x

∂
∂

, 
( , )

= l le le
l

f x u
N

u

∂
∂

 , 
'

= ( )
l l le

C p x ,
 

     
1 1

( , ) ( , )
( ) ( )l le le l le le

l le le le l

f x u f x u
d t x u x R t

u x

∂ ∂
= − − +

∂ ∂
, 

      
2 2

( )
( ) ( )l le

l le le l

p x
d t y x R t

x

∂
= − +

∂
, 

     

ˆ( , , )
= e e e

g r y u
L

r

∂
∂

, 
ˆ( , , )

=
ˆ

e e eg r y u
M

y

∂
∂

, 
ˆ( , , )

= e e eg r y u
S

u

∂
∂

.  

  

2

1

1
( )= (( ( ) ) (( ( ) ) ) ( , )

2
l l le l le l l l

R t x t x u t u f
x u

∂ ∂− + −
∂ ∂

ℏ Ż  and 

''

2

1
( ) ( )( ( )

2
l l l l

R t p x tς= − 2)
le

x  are the bounded residual errors. 

T T T T

1 2
[    ]

e e e se
u u u u= ⋯ ,

1= + ( ( ) )l le l l lex θ x t x−ℏ , 
2+l le lu θ=Ż

( ( ) )l leu t u− , 3= + ( ( ) )l le l l lex θ x t xς −  and 0 1liθ≤ ≤ ( 1,2,3)i = .
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( ) ( )e e e ek r y M r L k u Sγ ρ= − − + − ,
1

( )= (( ( ) )
2

e
k r k r

r
ρ ∂− +

∂
2ˆ ˆ( ( ) ) ( ( ) ) ) ( , , )

ˆ
e e

y k y u k u g
y u

κ υ τ∂ ∂− + −
∂ ∂

. , ,κ υ τ  are real 

numbers between er  and ( )r k , ˆ
ey  and ˆ ( )y k , eu  and ( )u k , 

respectively.
 

Remark 3: Since systems (1) and (4) are linearized in terms of 

Taylor Series Expansion due to their steady operation at steady 

state, the solution of the focused OOC problem in this paper is 

essentially suboptimal. 

B.  Lifting Technique for Dual-rate Rougher Flotation 

Processes  

  Since digital controller (2) is employed, then system (7) is in 

fact the following discrete-time system  

1

2

ˆˆ ˆ( 1) ( )+ ( ) ( )

( ) ( ) ( )

l l l l l l

l l l l

x n G x n N u n d n

y n C x n d n

+ = +
= +

                 (9)

 

where 0ˆ lG T

lG e= , 
0

0

ˆ l
T

G

l lN = e d N
τ τ∫ , 

0

1 1
0

ˆ ( ) ( )l
T

G

l ld n e d d
τ τ τ= ∫ .

0T  is the sampling period of the rougher flotation cells. 

  An augmented system is constructed by defining a compact 

form 
T T T( ) [ ( )  ( )]

l l l
ξ n x n E n=  as 

( 1) ( ) ( ) ( )l l l l l l lξ n Aξ n B w n I d n+ = + + ɶ
              

(10) 

where 

ˆ ˆ ˆ
= l l P l I

l

l

G N K C N K
A

C I

 −
 

−  
, 

ˆ
= l P

l

N K
B

I

 
 
 

, 

ˆ
=

0

l P
l

I N K
I

I

 −
 

− 
 , 1

2

ˆ ( )
( )

( )

l
l

l

d n
d n

d n

 
=  
  

ɶ  

  Further, defining 
T T T T

1 2
( ) [ ( )  ( ) ( )]sξ n n n nξ ξ ξ= ⋯  yields the 

following compact form for the rougher flotation process 

( 1) ( ) ( ) ( )ξ n Aξ n Bw n Id n+ = + + ɶ
                    

(11) 

where 
T T T T

1 2
( ) [ ( )  ( ) ( )]sw n w n w n w n= ⋯ , T T

1 2( ) [ ( )  ( )d n d n d n=ɶ ɶ ɶ

T T( )]sd nɶ⋯ , 1 2diag( , , , )sA A A A= ⋯ , 1 2diag( , , , )sB B B B= ⋯ , 

1 2diag( , , , )sI I I I= ⋯ . And (8) can be rewritten as 

 ( 1) ( )+( ) ( ) ( )

ˆˆ( ) ( ) ( )

I p
r k Lr k M S + SK k SK w k

k M S d k

ξ

γ

+ = − +

+ + − ɶ
       

(12) 

where  

     
ˆ=M MIC , 1 2diag( , , , )sC = C C C⋯ , [ 0]j jC C= ,      

    ˆ ˆ=M MI Π , diag( , , , )Π = Π Π Π⋯ , [0 ]IΠ = ,   

   pS SK C= , 1 2diag( , , , )P P P sPK K K K= ⋯ ,  ˆ
pS SK= Π ,  

    1 2diag([0 ], [0 ], ,[0 ])I I I sIK K K K= ⋯ , 
0

ˆ
0 1

I
I =

 
 
 

. 

  It is well known that data are measured at the time instant n  
in the lower-layer flotation cell, while the economic benefit 

value is updated at the time instant 0k N n= in the upper-layer 

operational control loop. Then the following form holds 

0 0 0 0( ) ( ) ( +1) ( + 1)w k w nN w nN w nN N= = = …= −     (13) 

and (11) is rewritten in terms of slow-time scale as 

0 0 0(( 1)) (( 1) ) ( )

( ) ( ) ( )

ξ k ξ n N ξ nN N

Aξ k Bw k D kϑ
+ = + = +

= + +ɶ ɶ
             

(14) 

where 0N
A = Aɶ , 

0 1

=0

N
i

i

B A B
−

= ∑ɶ , 0 10 1[ , , , ]
N

D A I A I A I
−= ⋯ ,

 

T T T T

0 0 0 0 0
( )=[ ( ( 1)) ( ( 2)) ( )] .k d nN N d nN N d nNϑ + − + −ɶ ɶ ɶ⋯  

  Let T T *T T( ) [ ( ) ( ) ( )]X k k r k r kξ= , one has 
 

( 1) ( ) ( ) ( )X k GX k Nw k H kχ+ = + +ɶ ɶ ɶ                 (15) 

where 

0 0

0

0 0

I

A

G LM S + SK

I

 
 

=  



−



ɶ

ɶ , 

0

pK

B

N S

 
 

=  
 
 

ɶ

ɶ
, 

0

ˆ

0 0

D

H D I

 
 

=  
 
 

ɶ , 

ˆ ˆ[0 0 ]ˆD M S= −⋯ , 
( )

( )
( )

k
k

k

ϑ
χ

γ
 

=  
 

 

Remark 4: Here, the desired economic benefit is constant, i.e.,

( 1) ( )r k r k
∗ ∗+ = . 

 

  Note that the residual error ( )kχ
 
is dependent of the state 

( )X k of augmented system (15) by the definition of ( )kχ . For 

solving Problem 1, ( )kχ
 
should be considered as the 

disturbance corresponding to the state ( )X k . Thus, the OOC 

problem shown in Problem 1 can be formulated as the H∞ 

tracking control problem below. 

Problem 2: 

  Find a set-point ( ) ( )kw k w X=
 
satisfying 

1) the attenuation condition below for a specific attenuation 

factor 0γ > :  

T T 2

0

2

0

( ) ( ) ( )( )( ) ()k k

kk

X k QX k w k Rw kkβ βγ χ
∞ ∞

= =

+ ≤∑ ∑ɶ (16)

 
  2) The tracking error 

*( ) ( ( ) ( ) )r re k e k r k r= −  converges to 

zero. 

IV. ON-POLICY Q-LEARNING FOR SOLVING H∞  CONTROL 

BASED ON ZERO-SUM GAME 

  This section shows how to find the solution of Problem 2 by 

using zero-sum game based Q-learning method.    

  Define a new performance index in terms of (16): 

22

0

T T

( ( ), ( ))

( ( ) ( ) ( ) ( ) ( ) )
k

k

J w k k

X k QX k w k Rw k k

χ

β γ χ
∞

=
= + −∑ ɶ

  

(17) 

  Actually solving H∞ tracking control problem is equivalent to 

maximizing and minimizing the cost function (17) by using 

zero-sum game approach [24-29], that is,  

)

*

( ) ( )

T

( ) ( )
0

T

*

22

( ( ), min max ( ( ), )

min max ( ) ( )

( ) ( )

( )) ( )

(

( ) )

w k k

w k k

k

k

J w k J w k

X k QX k

w k R

k

kw k

k
χ

χ

χ χ

β

γ χ

∞

=

=


= 




+ −

∑ ɶ

      

(18) 

Define the value function as 
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2

*

0

2

T

T

( )) min max (( ( ) ( )

( ) ( ) )( )

k k

k

k
w

V X X k QX k

w k Rw k

k

k

χ
β

γ χ

∞

=

=

+ −

∑ ɶ

      
(19) 

Combining with
* *

1
( ) ( )w k K X k= − and

* *

2
( ) ( )k K X kχ = −  

yields 
* T( ) ( ) ( )kV X X k PX k= ( 0)P >  by referring to [24, 30]. 

By (19), the action-dependent optimal Q-function is defined 

below: 
T T*

*2 T

( ) ( ) ( ) (( ( ), ( ), ( ) )

( ) (

)

( 1 )) ( )

X k QX k w k Rw kQ X k w k k

V Xk kkγ χ χ β
χ +

− +

=

+

ɶ

  

(20) 

and one has 
**

* * *

( )) min max ( ( ), (( ), ( ))

( ( ), ( ), ( ))

k kw
k Q X k w k k

Q X k w k

V X

k

χ
χ

χ

=

=
       

(21) 

Thus Proposition 1 is naturally derived by referring to [24]. 

 Proposition 1: If we set 
T T T T( ) [ ( ) ( ) ( )]z k X k w k kχ= , 

1( ) ( )w k K X k= − , 2( ) ( )k K X kχ = − , thus the following form 

holds 
* T( ( ), ( ), ( )) ( ) ( )Q X k w k k z k Hz kχ =                     (22) 

H  is denoted as  

T

T T

T T T

T T T T

T T T T 2 T

( )

( ) ( )

XX Xw X

Xw ww w

X w

H H H

H H H

H H H

G PG Q G PN G PH

G PN N PN R N PH

G PH N PH I H PH

χ

χ

χ χ χχ

β β β
β β β
β β γ β

 
 
 
 
 

 +
 = + 
 − + 

ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

   

(23) 

and 
* T *

( )P M HM=
                             

(24) 

where 
T

* * T * T

1 2( ) ( )M I K K = − −  . 

  By Proposition 1, one has the Q-function based game Bellman 

equation 
T T T

2 T T

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( 1) ( 1)

z k Hz k X k QX k w k Rw k

k k z k Hz kγ χ χ β
= +

− + + +

ɶ

              

(25) 

Implementing 
*( ( ), ( ), ( )) ( ) 0Q X k w k k w kχ∂ ∂ =  and 

*
( ( ), ( ), ( )) ( ) 0Q X k w k k kχ χ∂ ∂ =  yields the optimal set-point 

and the worst disturbance as 
* * 1 T 1

1

T 1 T

* * T 1 1

2

T T 1 T

( ) ( ) ( ( ) )

(( ( )( )) ( )

( ) ( ) ( )

( ) ( )

ww w w

Xw w X

w ww w

X w ww Xw

w k K X k H H H H

H H H H X k

k K X k H H H H

H H H H X k

χ χχ χ

χ χχ χ

χχ χ χ

χ χ

χ

− −

−

− −

−

= − = − −

⋅ −

= − = − −

⋅ −
      (26)

 
where the matrix H  satisfies (25). The policy iteration (PI) is 

used to learn the optimal set-point and the worst disturbance. 

Algorithm 1: Model-free Q-learning algorithm 

1. Initialization: Given stabilizing set-point and disturbance 

policy gains 
0

1
K

 
and 

0

2
K , 0 1β< ≤  and 0γ > . Let 0j = , 

where j  denotes iteration index; 

2. Policy evaluation by solving Q-function matrix 1jH + : 

T 1 T T

2 T T 1

( ) ( ) ( ) ( ) ( ( )) ( )

( ( )) ( ) ( 1) ( 1)

j j j

j j j

z k H z k X k QX k w k Rw k

k k z k H z kγ χ χ β

+

+

= +

− + + +

ɶ

   

(27) 

3. Policy update: 

         
1 1

1
( ) ( )j jw k K X k+ += − , 

1 1

2
( ) ( )j jk K X kχ + += −  

where 

 

1 1 1 1 1 1 T 1

1

1 T 1 1 1 1 T

( ( ) ( ) )

(( ) ( ) ( ) )

j j j j j

ww w w

j j j j

Xw w X

K H H H H

H H H H

χ χχ χ

χ χχ χ

+ + + + − + −

+ + + − +

= −

⋅ −          
(28)

1 1 1 T 1 1 1 1

2

1 T 1 T 1 1 1 T

( ( ) ( ) )

(( ) ( ) ( ) ( ) )

j j j j j

w ww w

j j j j

X w ww Xw

K H H H H

H H H H

χχ χ χ

χ χ

+ + + + − + −

+ + + − +

= −

⋅ −
        

(29) 

4. Stop when 
1j jHH ε+− ≤  with a small constant ε

( 0)ε > . 

Remark 5: Note that Algorithm 1 is in fact an on-policy 

Q-learning approach wherein the disturbance ( )kχ
 
needs to be 

updated and act the rougher flotation cells using 
1 1

2

j j

k k
K Xχ + += − , while it essentially is the residual error 

generated by linearizing the nonlinear dynamics and cannot be 

specified. Moreover, as pointed out in [25], adding probing 

noise to the set-point results in a bias in solving the real value of 
1jH + . Compared with on-policy Q-learning, off-policy 

Q-learning including behavior policy and target policy is more 

practical and efficient technique for dealing with optimal 

control problem as it can overcome the two shortcomings 

generated by on-policy Q-learning. Hence the sequels will 

devote to designing off-policy Q-learning algorithm for 

achieving optimal operation of rougher flotation processes. 

V. OFF-POLICY Q-LEARNING ALGORITHM 

  This section first presents an off-policy Q-learning algorithm 

for learning the optimal set-point and the worst disturbance 

using only data, and then rules used for selecting the optimum 

set-point are proposed as shown in Fig. 2. 

A.  Derivation of Off-policy Q-learning Algorithm 

  Q-function based Lyapunov equation is given as follows by 

using (27) 
T 1 T

T 1

( ) ( )

( )

j j j j j

T j j j

c c

M H M M M

G M H M Gβ

+

+

= Π

+ ɶ ɶ
                    (30)

 where 
T

T T

1 2( ) ( )j j jM I K K = − −  , 2diag( , , )Q R IγΠ = −ɶ .  

Introducing the auxiliary variables 
1( ) ( )

j j
w k K X k= −

 
and

2( ) ( )j jk K X kχ = −
 
into augmented system (15) yields 

1

2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

j

j

cX k G X k N X k w k

H k

K

K X kχ

+ = + +

+ +

ɶ ɶ

ɶ
           

(31)
 

where 1 2
j

c
j

KG N HKG −= −ɶ ɶ ɶ ɶ . Along the trajectory of (31), one 

has  
*, 1

T T T 1

T T 1

T

1 2

( ( ), ( ), ( ))

( ) ( ) ( )

( )( ) ( ) ( ( 1)

( ( ) ( )) ( ( ) ( )))

j j j

j j j

c c

j j j

j j

Q X k w k k

X k G M H M G X k

X k M H M X k X k

N K X k w k H K X k k

χ
β

β
χ

+

+

+

−

= − +

− + − +

ɶ ɶ

ɶ ɶ
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T 1

1

T T

2

( ) ( ( 1) ( ( ) ( ))

( ( ) ( ))) ( )( ) ( )

j j j j

j j j

M H M X k N K X k w k

H K X k k X k M M X kχ

+⋅ + − +

− + = ∏

ɶ

ɶ
   

(32) 

  Since 1jP +  and 1jH +  have the same relationship as that 

shown in (24), then the off-policy Q-function game Bellman 

equation can  be obtained  
T T 1

T T 1

T

1

T

2

T T

1

1

1

1

2

1

1

T T

1

2

( )( ) ( )

( ) ( 1)

2 ( ( ) ( ))

2 ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

2 ( ( ) ( )) ( ( ) ( ))

( ( )

( 1)

( 1)

( 1

(

)

j j j

j j j

j

j

j j

j j

j

j

j

j

j

X k M H M X k

M H M X k

N K X k w k

H

X k

X k P

X K X k k

K X k w k N N K X k w k

K X k w k N H K X k k

K X

P

k

k

P

P

β
β
β χ

β
β χ

β χ

+

+

+

+

+

+− +

+ +

+ +

− + +

− + +

+

− +

+

+ ɶ

ɶ

ɶ ɶ

ɶ ɶ

1T T

2

T T

)) ( ( ) ( ))

( )( ) ( )

j

j j

jk H H K X k k

X k M M X k

P χ+ +

= Π

ɶ ɶ

(33) 

Consider that the relationship between 1jH +  and 1jP +  is same 

as that shown in (23), (33) can be rewritten as 
1( ) jj j

kH k L ρ+ =
                                  

(34)
 

where 

        
T T 2 T( ) ( ) ( ) ( ) ( ) ( )j

k
X k QX k w k Rw k k kρ γ χ χ+= −ɶ , 

1 1 1 1 1 1
1 2 3, ,
j j j j j j

XX Xw XL H L H L H χ
+ + + + + += = = ,

 
1 1 11 1 1

54 6, ,
j j jj j j

ww wL H L H L Hχ χχ
+ + ++ + += = = ,

 
T

1 1 T 1 T 1 T

1 2 6(vec( )) (vec( )) (vec( ))j j j jL L L L+ + + + =  ⋯ ,
 

1 2 6( ) j j jjH k H H H =
 

⋯ ,

T T T T
1

T T T T
2 1

T T T T
3 2

T T
4 1 1

T T

T T
5 1 2

T

( ( ) ( )) ( ( 1) ( 1)),

2 ( ) ( ) 2 ( 1) ( ( 1)) ,

2 ( ) ( ) 2 ( 1) ( ( 1)) ,

( ( 1))) ( ( ( 1))

( ) ( ),

2 ( ( 1)) ( ( ( 1))

2

j

j j

j j

j j j

j j j

H X k X k X k X k

H X k w k X k K X k

H X k k X k K X k

H K X k K X k

w k w k

H K X k K X k

β

β

χ β

β

β

χ

= ⊗ − + ⊗ +

= ⊗ + + ⊗ +

= ⊗ + + ⊗ +

= − + ⊗ +

+ ⊗

= − + ⊗ +

+ T( ) ( ),k w k⊗

 

                 

T T
6 2 2

T T

( ( 1)) ( ( 1))

( ) ( )

j j jH K X k K X k

k k

β

χ χ

= − + ⊗ +

+ ⊗  

  If  1jL + is estimated, then 1

1

jK + and 1

2

jK +  can be calculated as 

 
1 1 1 1 1 1 T 1

1 4 5 6 5

1 T 1 1 1 1 T

2 5 6 3

( ( ) ( ) )

(( ) ( ) ( ) )

j j j j j

j j j j

K L L L L

L L L L

+ + + + − + −

+ + + − +

= −

⋅ −            
(35) 

1 1 1 T 1 1 1 1

2 6 5 4 5

1 T 1 T 1 1 1 T

3 5 4 2

( ( ) ( ) )

(( ) ( ) ( ) ( ) )

j j j j j

j j j j

K L L L L

L L L L

+ + + + − + −

+ + + − +

= −

⋅ −
           

(36) 

B.  Off-policy Q-learning Algorithm 

Algorithm 2: Off-policy Q-learning algorithm 

1. Data collection: Collect system data ( ( ), ( ), ( ))x n E n r k

from the rougher flotation operational process using a  behavior 

set-point ( )w k and a behavior disturbance ( )kχ and store them 

in the sample sets 
j

i
H and 

jρ . Given 0β >  and 0γ > ; 

2. Initiation: Choose the initial gains 0

1K  and 0

2K , such that 

system (15) can be stabilized. Let 0j = ; 

3. Implementing Q-learning: 1j
iL + ( 1,2, ,6)i = ⋯ are 

estimated in terms of (34) using the collected data in Step 1, and 

then 
1
j

K  and 
2
j

K
 
are updated in terms of (35) and (36);

 

4. If 1
11 1

j j
K K l

−− ≤ and 1
22 2

j j
K K l

−− ≤ ( 1l  and 2l  are 

small positive numbers), then stop the iteration and the optimal 

set-points have been obtained. Otherwise, let 1j j= +  and go 

back to Step 3. 

Remark 6: In Algorithm 2, a specific behavior set-point and a 

specific behavior disturbance are applied to generate data of 

rougher flotation operational process while the behavior 

set-point is tracked by the output of lower-layer control loops, 

thus the data ( ( ), ( ), ( ))l lx n E n r k  can be firstly collected. Then 

the set-point 1
=( ) ( )j jw k K X k−  and the disturbance policy 

2( ) ( )
j j

k K X kχ = −  are evaluated and updated using the 

collected data, but they are not applied to the rougher flotation 

operational processes, which is different from the on-policy RL 

[22-24, 30] where the target set-point and target disturbance 

under evaluation are applied to systems to collect data.  

Remark 7: Practical rougher flotation processes are usually 

steadily operated near the equilibrium points under the control 

 

Fig. 2. Off-policy Q-learning scheme by using zero-sum games 
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inputs obtained based on operator's rich experience. Thus the 

initial stabilizing gains 0

1K  and 0

2K can be obtained easily. 

Besides, H∞ control method can be used to yield an initial 

stabilizing control policies for systems [31]. 

Remark 8: To accurately estimate the real value of 1jL + in (34)

by using the recursive least squares (RLS) or batch least 

squares (BLS), the behavior set-point should be in the form of 

the ( ) ( )w k e k+ ( ( )e k is a probing noise) to guarantee the 

persistence of excitation [22-27, 29-31]. Lemma 1 is presented 

to show that there is no bias as a result of adding probing noise 

in Algorithm 2. 

Lemma 1: Let 1jH + be the solution to (32) with the behavior 

set-point ( )w k , then it is equivalent to the solution to (32) with 

the behavior set-point ( ) ( ) ( ( ) 0)w k e k e k+ ≠ . 

Proof: If the behavior set-point is ( ) ( )w k e k+ , then the 

collected data ( 1)X k +
 
is in fact ˆ ( 1)X k +  with the form of 

1

2

ˆ ( 1) ( ) ( ( ) ( ) ( ))

( ( ) ( ))

c
j

j

X k G X k N X k w k e k

H X k

K

K kχ

+ = + + +

+ +

ɶ ɶ

ɶ
       

(37) 

Substituting (37) and ( ) ( )w k e k+
 
into (32) yields 

T T 1

T

1 2

T 1

1

T T

( )( ) ( ) (

    ( ( ) ( ) ( )) ( ( ) ( )))

ˆ    ( ) ( ( 1) ( ( ) ( ) (

ˆ ( 1)

))

    ( )( ) ( )

j j j

j j

j j j j

j j

X k M H M X k

N K X k w k e k H K X k k

M H M X k N K X k w k e k

X k M M X k

X kβ
χ

+

+

−

− + + − +

⋅ + − + +

Π

+

=

ɶ ɶ

ɶ
(38) 

By (37) and (31), (38) becomes (32). Hence, adding the probing 

noise during learning in the proposed off-policy Q-learning 

algorithm cannot produce bias. This completes the proof.        ■ 

Theorem 1: 1
1 2( , , )
j jj

H K K
+ is the solution of (27)-(29) if and 

only if it is the solution of  (34)-(36).  

  Proof : It is easily concluded that if 1
1 2( , , )
j jjH K K+  is the 

solution of (27)-(29), then it can satisfy (34)-(36) from the 

above derivation. Next the fact that the solution of (34)-(36) is 

also the solution of  (27)-(29) will be shown. 

  Note that (34) is equivalent to (33) by checking them. Thus the 

solution of (34) can make (33) hold. Subtracting (33) from (32), 

one has 
T T 1

T T T 1

T T

( )( ) ( )

( ) ( ( )

( )( ( )

j j j

j j j

c c

j j

X k M H M X k

X k G M H M G X k

X k M M X k

β

+

+−

= Π

ɶ ɶ）

）             

(39) 

Due to ( 1) ( )cX k G X k+ = ɶ  by using
1 1

1
( ) ( )

j j
w k K X k

+ += − , and

1 1

2
( ) ( )j jk K X kχ + += − and the definition of ( )z k , the solution 

of (39) is equivalent to that of  (27). Moreover, (35) and (36) are 

the same as (28) and (29). This completes the proof.               ■ 

Remark 9: From Theorem 1, it is easy to know that ( )jw k =

1 ( )
j

K X k−  and 
1 1

2
( ) ( )j jk K X kχ + += − learned by Algorithm 2 

can converge to the Nash equilibrium solution *( )w k  and 

*
( )kχ  as j → ∞ , i.e. *( )l ( )im

j

jw k w k
→∞

= , *( )l ( )im
j

j k kχ χ
→∞

=

since the convergence of solutions of Algorithm 1 has been 

proven in [27, 29].  

Remark 10: The existing model-free OOC methods [1, 2, 20, 

21] tried to find the optimal set-points, while one can notice that 

the correction of set-points depends on the operator’s 

experience in [1, 2, 21], and [20] presented the neural-network 

based set-points design on the premise that the optimal 

performance indices are known a priori. The proposed 

off-policy RL method in this paper can learn the optimal 

set-points for achieving OOC of operational processes with 

completely unknown dynamics of controlled unit processes and 

unknown functional dependence of operational index.  

Remark 11: In contrast to the on-policy Q-learning method 

[22-24, 30], the arbitrary behavior policy is introduced when 

implementing the off-policy Q-learning method, which is used 

to generate data of systems for enriching data exploration while 

the target policies, especially disturbance policy, are updated to 

find the optimal policy but not to be employed to systems. 

Particularly, adding probing noise into the behavior policy 

would not produce bias of solution when implementing policy 

evaluation [25]. Actually, Algorithm 2 can also be applied into 

other stages of flotation processes such as cleaning, scavenger, 

regrinding and classification circuits, and therefore the optimal 

operation of the whole flotation processes can be achieved. 

C.  Optimum Set-point Selector 

  In practical rougher flotation operational processes, the 

set-points followed by the concentrate grades and the tail 

grades are usually bounded, that is min max[ , ]l l lw w w∈ , where

maxlw
 
and minlw

 
are non-negative real vectors with 

min maxl lw w≤ . To satisfy the constraint of set-points, the 

following rules are presented to get the optimum set-point 
*ˆ
k

w . 

Rule 1. If 
*

min maxk
w ww ≤≤ (

T T T T

max 1max 2max max
[ ]

s
w w w w= ⋯ , 

T T T T

min 1min 2min min
[ ]

s
w w w w= ⋯ ), then 

* *ˆ =
k k

w w ; 

Rule 2. If 
*

mink
w w<  or 

*

maxk
w w> , then 

* *

1
ˆ =

k k
w w − . 

Theorem 2: The set-point derived by the above rules can 

guarantee 
1ˆ j

k
w

+
 to converge to the optimal set-points, that is,  

* *ˆlim k k
k

w w
→∞

=
                                      

(40) 

  Proof: By Rule 1 and Rule 2, one has 
* * * *

1
ˆ = + )

k k k k
w w w wα − −(

                           
(41) 

where =0α  or 1 . Thus, 
* * * *

1
ˆ

k k k k
w w w w−− ≤ −

                         
(42) 

Since 
*

k
w  can guarantee the stability of the whole operational 

process (15) , then
* *

1
0

k k
w w− − →  as k → ∞ . By (42), (40)

holds. This completes the proof.                                                 ■ 

Remark 12: Refined Ziegler-Nichols (RZN) method can design 

the PI controller parameters for the lower-layer rougher 

flotation control loops [1, 2, 17-19]. 

VI. SIMULATION RESULTS 

  In this section, the proposed off-policy Q-learning algorithm 

is verified in the rougher flotation operational process with two 

cells. Moreover, the dual rates operation is analyzed and proper 

comparisons are made to show the contributions of this paper.    
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The flotation models according to mass balance in froth and 

pulp phases are given below [14, 17-19] 

( )

( ) ( )

1

1

i

lp i i i i i ilT

lp p lp e le la la

g l lp

i

i i i i ile lc

le e le p lp

g l l lp

dM q
f k M k M q X

dt A h

dM q
f k M k M

dt A H h

ε

ε

 
 = = − + + +
 − 

 
 = = − + +
 − − 

(43)

 

The concentrate grade and the tail grade in cell l  respectively 

are 

   

1 1 2 2

1 2

le lcp le lcp

lcg cu

le le

M g M g
L L

M M

+
=

+
, 

1 1 2 2

1 2

lp lcp lp lcp

ltg cu

lp lp

M g M g
L L

M M

+
=

+
 (44)

 

The general concentrate grade and the recovery respectively are 
2 2

1

1

2

1

2

1

le lcp

i l

cg cu

l

i i

i

e

li

M g

L L

M

= =

==

=
∑∑

∑∑
  , 

( )

(
0

)
1 0

a tg cg

cg tg

cg

a

g L L

L L g
L

−
= ⋅

−
             (45) 

where 1, 2l = . The sizes of two cells are both 
353.2 3.2 m×  

and values of other parameters are listed in Table 1 [14]. The 

economic benefit has the form of ˆ
k r k r kr M y N u= + , where 

T[100 100 10]
r

M = , [0.01 0.1 0.01 0.1]rN = . The 

economic benefit objective is 10, 800Q = , diag(50,R =
50,50,50) , 0.9β = , 5γ = , T

max [1 1]lw = and T

l minw [0 0]= . 

  The equilibrium points of the rougher flotation process under 

the operational parameters listed in Table 1 are 1 1
[ ]

p a
h q =

[2.8 17] , 2 2
[ ] [2.5 12]

p a
h q = , 1 2 1 2

1 1 1 1[ ]p p e eM M M M =

[16.8 824.266 4.56 0.104] ,  1 2 1 2

2 2 2 2[ ]p p e eM M M M =  

[20.84 1300 5.67 0.1645] .  

TABLE  I:  
PARAMETERS AND VALUES 

parameter Physical meaning Value 

i

pk  Flotation rate 
1 2 117.9 ,  0.04 (min )p pk k −= =

 
i

ek  Drainage rate 
11 265.6 ,  316 (min )e pk k −= =

 

1 2
,

T T
q q  Wake 

3m9.3 ,  6.3 ( )
min

 

gε  
Stagnation 
constant 

0 

1 2
A A=  

Cross-section 

 area 
253.2 m  

i

aX  
Mineral species 
concentration 

1

2 1

1

2

0.1549

3.0484
cp a

a

a

p

a

a

c

g g

X

X
g

X
g

=

−
= =

−
 

1 1

1 2,cp cpg g  

2 2

1 2
,

cp cp
g g  

Brass grade in 
brass pulp and 

gangue pulp 
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  First, we implement Algorithm 2 to learn the optimal set-point. 

Set the sampling interval of the lower-layer device loops and 

the updating period of the upper-layer operational control loop 

to be 1min and 30 min, respectively. Fig. 3 demonstrates the 

convergence results of 1jH + , 
1

j
K  and 

2

j
K . The learned 

optimal set-point gain *

1K
 
is presented in (46). The optimal 

set-point can be further approximated by combining with Rule 

1 and Rule 2. 

 
Fig. 3. Convergence results of parameters 
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  In the real operation of rougher flotation process, it is hard to 

avoid external disturbance and measurement errors. Hence, the 

external disturbance signal and measurement noise are assumed 

as 0.001
0.05 cos(100 ( ) )

t
e t tν− ( ( )tν = T

1 2 3 4[ ( ) ( ) ( ) ( )]t v t v t v tν  is a 

vector with ( ) [0,1], 1,2,3,4)iv t i∈ =  and put into cell 1 and cell 

2, respectively. 

  Then, three cases of the updating periods of the upper-layer 

operational control loop (a): 10 min, (b): 30 min and (c): 120 

min are taken into account for showing the tracking results of 

the set-points and the economic operational index. From Fig. 

5(a), one can find that the longer it takes to follow the desired 

economic benefit, the slower updating period of upper-layer 
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operational process is. While the fast updating rate of 

upper-layer operational control loop also can bring increasing  

computational load. In general, proper updating rate of the 

upper-layer operational process should be chosen according to 

the requirements of practical industrial operations. Moreover, 

the results shown in Fig. 4 and Fig. 5 also indicate that the 

proposed off-policy Q-learning method has good performance 

and robustness to both disturbance and measurement errors.        

  The comparisons with the fixed set-point method and the 

intelligent control method [1, 2] are made under the same initial 

operational scenario listed in Table 1. The fixed set-points of 

cell 1 and cell 2 are respectively chosen as [0.0117 0.01]  and 

[0.1274 0.01] . The set-points in the intelligent control method 

are adjusted according to the error between the desired 

economic benefit and the real value. The tracking results of 

economic benefit and calculated recovery are respectively 

shown in Fig. 5(b) and Fig. 5(c), where one can see that the 

better tracking result and high recovery rate are obtained by 

using the proposed off-policy RL algorithm, since the 

operators' experience based fixed set-points maybe not the 

optimal set-points. Moreover, the increments of set-points in 

the intelligent control method are chosen also based on the 

operators' experience, then the improper increments could 

produce negative effects on tracking the desired economic 

benefit and mineral recovery. 

VII. CONCLUSION 

  The data-driven OOC problem is addressed for dual-rate 

rougher flotation operational processes by presenting an 

off-policy Q-learning algorithm without requiring the 

knowledge of dynamics of lower-layer rougher flotation cells 

and economic benefit operation. Combined with zero-sum 

games method, Q-function based game Bellman equation is 

derived for  solving the optimal set-point and the worst 

disturbance. Further, an off-policy game Bellman equation is 

presented to find improved target set-point by evaluating the 

target set-point and the target disturbance using collected data. 

Simulations are implemented to show the effectiveness of the 

proposed method. 

 
Fig. 5. Tracking performance of the economic benefit and  

calculated recovery 
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