30 research outputs found

    Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows

    Get PDF
    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by transient growth mechanism due to shear flow nonnormality. This mechanism appears to be essentially anisotropic in spectral (wavenumber) plane and operates mainly for spatial Fourier harmonics with streamwise wavenumbers less than a ratio of flow shear to the Alfv\'{e}n speed, ky<S/uAk_y < S/u_A (i.e., the Alfv\'{e}n frequency is lower than the shear rate). We focused on the analysis of the character of nonlinear processes and underlying self-sustaining scheme of the turbulence, i.e., on the interplay between linear transient growth and nonlinear processes, in spectral plane. Our study, being concerned with a new type of the energy-injecting process for turbulence -- the transient growth, represents an alternative to the main trends of MHD turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows -- to the \emph{bypass} concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in wavenumber plane [as occurs in the related hydrodynamic flow, see Horton et al., Phys. Rev. E {\bf 81}, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.Comment: 19 pages, 7 figures, published in Phys. Rev. E 89, 043101 (2014

    Transient growth and coupling of vortex and wave modes in self-gravitating gaseous discs

    Full text link
    Flow nonnormality induced linear transient phenomena in thin self-gravitating astrophysical discs are studied in the shearing sheet approximation. The considered system includes two modes of perturbations: vortex and (spiral density) wave. It is shown that self-gravity considerably alters the vortex mode dynamics -- its transient (swing) growth may be several orders of magnitude stronger than in the non-self-gravitating case and 2-3 times larger than the transient growth of the wave mode. Based on this finding, we comment on the role of vortex mode perturbations in a gravitoturbulent state. Also described is the linear coupling of the perturbation modes, caused by the differential character of disc rotation. The coupling is asymmetric -- vortex mode perturbations are able to excite wave mode ones, but not vice versa. This asymmetric coupling lends additional significance to the vortex mode as a participant in spiral density waves and shocks manifestations in astrophysical discs.Comment: 10 pages, 8 figure

    Linear coupling and over-reflection phenomena of magnetohydrodynamic waves in smooth shear flows

    Full text link
    Special features of magnetohydrodynamic waves linear dynamics in smooth shear flows are studied. Quantitative asymptotic and numerical analysis are performed for wide range of system parameters when basic flow has constant shear of velocity and uniform magnetic field is parallel to the basic flow. The special features consist of magnetohydrodynamic wave mutual transformation and over-reflection phenomena. The transformation takes place for arbitrary shear rates and involves all magnetohydrodynamic wave modes. While the over-reflection occurs only for slow magnetosonic and Alfv\'en waves at high shear rates. Studied phenomena should be decisive in the elaboration of the self-sustaining model of magnetohydrodynamic turbulence in the shear flows

    Narrow Components within the Fe Kalpha Profile of NGC 3516: Evidence for the Importance of General Relativistic Effects?

    Full text link
    We present results from a simultaneous Chandra HETG and XMM-Newton observation of NGC 3516. We find evidence for several narrow components of Fe Kalpha along with a broad line. We consider the possibility that the lines arise in an blob of material ejected from the nucleus with velocity ~0.25c. We also consider an origin in a neutral accretion disk, suffering enhanced illumination at 35 and 175 gravitational radii, perhaps due to magnetic reconnection. The presence of these narrow features indicates there is no Comptonizing region along the line-of-sight to the nucleus. This in turn is compelling support for the hypothesis that broad Fe Kalpha components are, in general, produced by strong gravity.Comment: 12 pages, 3 color figures. LaTeX with postscript figures. Resubmitted June 7 2002, to Astrophysical Journal Letter

    X-ray iron line variability for the model of an orbiting flare above a black hole accretion disc

    Get PDF
    The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc as well as the geometry of the emitting region and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time dependent iron line taking into account all general relativistic effects and show that its shape is of very complex nature, and also present light curves accompanying the iron line variability. We suggest that future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps.Comment: Accepted for publication in MNRAS, 11 pages, 12 figure

    Excitation of spiral density waves by convection in accretion discs

    Full text link
    Motivated by the recent results of \citet{Lesur_Ogilvie10} on the transport properties of incompressible convection in protoplanetary discs, in this paper we study the role of compressibility and hence of another basic mode -- spiral density waves -- in convective instability in discs. We analyse the linear dynamics of non-axisymmetric convection and spiral density waves in a Keplerian disc with superadiabatic vertical stratification using the local shearing box approach. It is demonstrated that the shear associated with Keplerian differential rotation introduces a novel phenomenon, it causes these two perturbation modes to become coupled: during evolution the convective mode generates (trailing) spiral density waves and can therefore be regarded as a new source of spiral density waves in discs. The wave generation process studied here owes its existence solely to shear of the disc's differential rotation, and is a special manifestation of a more general linear mode coupling phenomena universally taking place in flows with an inhomogeneous velocity profile. We quantify the efficiency of spiral density wave generation by convection as a function of azimuthal and vertical wavenumbers of these modes and find that it is maximal and most powerful when both these length-scales are comparable to the disc scale height. We also show that unlike the convective mode, which tends to transport angular momentum inwards in the linear regime, the spiral density waves transport angular momentum outwards. Based on these findings, we suggest that in the non-linear regime spiral density waves generated by convection may play a role in enhancing the transport of angular momentum due the convective mode alone, which is actually being changed to outward by non-linearity, as indicated by above-mentioned recent developments.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    Chandra imaging of the X-ray nebula powered by pulsar B1509-58

    Get PDF
    We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) powered by the energetic young pulsar B1509-58. These data confirm the complicated morphology of the system indicated by previous observations, and in addition reveal several new components to the nebula. The overall PWN shows a clear symmetry axis oriented at a position angle 150 degrees (N through E), which we argue corresponds to the pulsar spin axis. We show that a previously identified radio feature matches well with the overall extent of the X-ray PWN, and propose the former as the long-sought radio nebula powered by the pulsar. We further identify a bright collimated feature, at least 4' long, lying along the nebula's main symmetry axis; we interpret this feature as a physical outflow from the pulsar, and infer a velocity for this jet >0.2c. The lack of any observed counter-jet implies that the pulsar spin axis is inclined at approx 30 deg to the line-of-sight, contrary to previous estimates made from lower-resolution data. We also identify a variety of compact features close to the pulsar. A pair of semi-circular X-ray arcs lie 17 and 30 arcsec to the north of the pulsar; the latter arc shows a highly-polarized radio counterpart. We show that these features can be interpreted as ion-compression wisps in a particle-dominated equatorial flow, and use their properties to infer a ratio of electromagnetic to particle energy in pairs at the wind shock sigma approx 0.005, similar to that seen in the Crab Nebula. We further identify several compact knots seen very close to the pulsar; we use these to infer sigma < 0.003 at a separation from the pulsar of 0.1 pc.Comment: 22 pages, including 9 embedded EPS figures, uses emulateapj. Now incorporates referee's comments - no major changes. To appear in The Astrophysical Journal, vol 569 (2002 April 20

    Fabrication of Cu-W Nanocomposites by Integration of Self-Propagating High-Temperature Synthesis and Hot Explosive Consolidation Technologies

    Get PDF
    Manufacturing W-Cu composite nanopowders was performed via joint reduction of CuO and WO3 oxides with various ratios (W:Cu = 2:1, 1:1, 1:3, 1:13.5) using combined Mg–C reducer. Combustion synthesis was used to synthesize homogeneous composite powders of W-Cu and hot explosive consolidation (HEC) technique was utilized to fabricate dense compacts from ultrafine structured W-Cu powders. Compact samples obtained from nanometer sized SHS powders demonstrated weak relation between the susceptibility and the applied magnetic field in comparison with the W and Cu containing micrometer grain size of metals. The density, microstructural uniformity and mechanical properties of SHS&HEC prepared samples were also evaluated. Internal friction (Q-1) and Young modulus (E) of fabricated composites studied for all samples indicated that the temperature 1000 °С is optimal for full annealing of microscopic defects of structure and internal stresses. Improved characteristics for Young modulus and internal friction were obtained for the W:Cu = 1:13.5 composite. According to microhardness measurement results, W-Cu nanopowders obtained by SHS method and compacted by HEC technology were characterized by enhanced (up to 85%) microhardness

    An optimal transient growth of small perturbations in thin gaseous discs

    Full text link
    A thin gaseous disc with an almost keplerian angular velocity profile, bounded by a free surface and rotating around point-mass gravitating object is nearly spectrally stable. Despite that the substantial transient growth of linear perturbations measured by the evolution of their acoustic energy is possible. This fact is demonstrated for the simple model of a non-viscous polytropic thin disc of a finite radial size where the small adiabatic perturbations are considered as a linear combination of neutral modes with a corotational radius located beyond the outer boundary of the flow.Comment: 15 pages, 5 figures, accepted for publication in Ast
    corecore