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Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence
in plane shear flows
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We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohy-
drodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity),
and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence
is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to
shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number)
plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of
flow shear to Alfvén speed, ky < S/uA (i.e., the Alfvén frequency is lower than the shear rate). We focus on
analysis of the character of nonlinear processes and the underlying self-sustaining scheme of the turbulence,
i.e., on the interplay between linear transient growth and nonlinear processes, in the spectral plane. Our study,
being concerned with a new type of energy-injecting process for turbulence—the transient growth—represents
an alternative to the main trends of magnetohydrodynamic (MHD) turbulence research. We find similarity of
the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical
turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of
kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow;
see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of
(anisotropic direct and inverse) cascade processes in MHD shear flows.
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I. INTRODUCTION

The problem of the onset and self-sustenance of turbulence
in spectrally stable nonuniform flows is a challenge to fluid
dynamics research. The efforts in this direction significantly
increased in the 1990s with the understanding and rigorous
description of the non-normal nature of nonuniform, or shear,
flows (see, e.g., Refs. [1–5]) and its direct consequences,
such as the possibility of finite-time, or transient, growth of
perturbations in spectrally stable shear flows (e.g., Refs. [6–9]).
Classical (direct and inverse) nonlinear cascade processes,
even if anisotropic, are in fact unable to provide self-sustenance
of perturbations (turbulence) when transiently (nonexponen-
tially) growing modes are present in the flow. In the case of
a specific shear flow, however, turbulence can self-organize
and be self-sustained through the subtle interplay of the
linear transient and nonlinear processes, where the flow shear
acts, through the Reynolds stress, to continuously supply the
turbulence with energy, thanks to an essential constructive
feedback provided by the nonlinear processes [10–15].
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The direct (nonlinear) cascade—a central process in Kol-
mogorov’s phenomenology—is a consequence of the exis-
tence of the so-called inertial range in spectral (Fourier, or
wave-number) space, which is free of the action of linear
energy-exchange processes and, in fact, occupied by nonlinear
transfers. Kolmogorov’s classical theory of forced turbulence
in hydrodynamics (HD) is the following: large-scale (long-
wavelength) perturbations imposed on the flow are transferred
by a direct nonlinear cascade through the inertial range, to short
wavelengths, and, ultimately, to the dissipation region. So, the
direct cascade, together with linear instability and dissipative
phenomena, constitute the well-known scheme of forced
turbulence in HD. However, in spectrally stable shear flows,
where transient growth of perturbations is the only possibility,
the balance of processes leading to the self-sustenance of
turbulence should be completely different. The shear-induced
transient growth mainly depends on the orientation (and, to a
lesser degree, on the value) of the perturbation wave vector:
the spatial Fourier harmonics (SFHs) of perturbations having
a certain orientation of the wave vector with respect to the
shear flow, can draw flow energy and get amplified, whereas
harmonics having another orientation of the wave vector
give energy back to the flow and decay. In other words, the
linear energy-exchange processes are strongly anisotropic in

1539-3755/2014/89(4)/043101(17) 043101-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.81.066304
http://dx.doi.org/10.1103/PhysRevE.81.066304
http://dx.doi.org/10.1103/PhysRevE.81.066304
http://dx.doi.org/10.1103/PhysRevE.81.066304
http://dx.doi.org/10.1103/PhysRevE.89.043101


G. R. MAMATSASHVILI et al. PHYSICAL REVIEW E 89, 043101 (2014)

wave-number k space and occur over a broad range of wave
numbers without leaving a free room (i.e., inertial range) for
the action of nonlinear processes only. This might render Kol-
mogorov’s phenomenology inapplicable to spectrally stable
shear flows. A strong anisotropy of the linear processes in shear
flows, in turn, leads to anisotropy of nonlinear processes in k
space. In this case, as revealed in Ref. [16], even in the simplest
HD shear flow with linear shear, the dominant nonlinear pro-
cess turns out to be not a direct, but a transverse cascade, that is,
a transverse (angular) redistribution of perturbation harmonics
over different quadrants of the wave-number plane (e.g., from
quadrants where kxky > 0 to quadrants where kxky < 0, or
vice versa). The interplay of this nonlinear redistribution
with linear phenomena (transient growth) becomes intricate:
it can provide either positive or negative feedback. In the case
of positive feedback, the nonlinearity repopulates transiently
growing modes and contributes to the self-sustenance of
perturbations. This combined action of anisotropic linear and
nonlinear processes can, in turn, give rise to an anisotropic
energy spectrum, which, in general, is expected to differ from
the Kolmogorovian. As a result, the transverse cascade may
naturally appear to be a possible keystone of the bypass concept
of subcritical turbulence in spectrally stable HD shear flows,
which is being actively discussed among the hydrodynamical
community (see, e.g., Refs. [13–15,17]).

In this paper, we extend the above study of nonlinear
processes in HD flows to magnetohydrodynamic (MHD)
flows and investigate subcritical turbulence in the simplest,
spectrally stable shear flow of magnetized plasma. We present
the results of direct numerical simulations (DNS) in the
Fourier plane, demonstrating the dominance of the transverse
cascade in MHD shear flows too. Specifically, we consider
the dynamics of two-dimensional (2D; with zero spanwise
wave number, kz = 0) perturbations in unbounded incom-
pressible MHD fluid flow with a linear shear of velocity
threaded by a uniform background magnetic field directed
parallel to the flow. This flow configuration is spectrally
stable in the linear regime [18,19] and therefore should be
dominated by the above-mentioned shear-induced transient
phenomena [20]. Our main goals are

(i) to examine the subcritical transition to turbulence and
subsequent self-sustaining dynamics by DNS;

(ii) to describe the general behavior of nonlinear processes
(transfers)—transverse cascade—in the presence of shear by
carrying out an analysis of these processes in the Fourier plane;
and

(iii) to show that the nonlinear transverse cascade is a
keystone of self-sustaining dynamics of the turbulence in this
simple open MHD flow system.

The last point will allow us to find out in what form the
bypass concept of subcritical turbulence can be realized in
spectrally stable MHD shear flows.

MHD turbulence phenomenon is ubiquitous in nature and is
very important in engineering applications. So, it is natural that
there is an enormous amount of research devoted to it, starting
with seminal papers [21,22] and their extensions [23,24]. To
date, the main trends, including cases of forced and freely
decaying MHD turbulence as well as MHD turbulence with
a background magnetic field, established over decades have
been thoroughly analyzed in a number of review articles and

books (see, e.g., Refs. [25–27] and references therein). Most
of these analyses commonly focus on turbulence dynamics in
wave-number space. However, the case of MHD turbulence in
smooth shear flows that we study here involves fundamental
novelties: an energy-supplying process for turbulence is flow
non-normality-induced linear transient growth. The latter
anisotropically injects energy into turbulence over a broad
range of length scales and, consequently, rules out the inertial
range of the sole activity of nonlinearity and leads to a
complex interplay of linear and nonlinear processes. These
circumstances give rise to new types of processes in turbulence
dynamics that are not accounted for in the main trends of MHD
turbulence research.

Magnetized shear flows have been considered in a number
of papers [28–30]. However, the range of target parameters
adopted in these studies excludes transient growth effects
due to shear and novelties associated with it. So, these
investigations still belong to the existing trends of MHD
turbulence research. For instance, these studies consider the
limit of a strong background magnetic field, B0, along the
flow, where the Alfvén frequency of modes with wave number
k, ωA = k · B0/(4πρ0)1/2 (ρ0 is the equilibrium density), is
higher than the shear rate of the mean flow, and since transient
phenomena responsible for energy injection from shear flow
into perturbation harmonics are inefficient in this case, external
forcing (peaked at certain wave numbers) is included to drive
turbulence. In contrast to this, in our case, the magnetic
field is weak and the adopted parameters permit an effective
transient exchange of energy between the mean flow and the
perturbation harmonics; this actually should serve to drive
turbulence without any external forcing. In this regard, in
Refs. [31–35], the dynamics of MHD turbulence is investigated
in a somewhat similar setup: astrophysical (protoplanetary)
disk flows with Keplerian shear and an imposed large-scale
magnetic field which is typically weak (i.e., usual plasma β �
1 in disks; see, e.g., Ref. [36]). This means that there exists
harmonics whose Alfvén frequency is smaller than the shear
parameter, as in our case. However, in Refs. [32,35], although
turbulence dynamics is analyzed in Fourier space, the magnetic
field is directed perpendicular to the flow, and consequently
shear-induced transient phenomena differ from those studied
here. On the other hand, Refs. [31,33,34], similarly to our
study, consider the orientation for the magnetic field along
the mean flow (i.e., azimuthal for disk flows). They observe
three-dimensional (3D) self-sustained turbulence, which is
expected to be governed by transient processes of a type similar
to those of the 2D shear turbulence studied here, but since the
turbulence dynamics (energy injection and transfers) was not
investigated in spectral space in those studies, identification of
shear-induced effects is not straightforward in their analysis.

The Earth’s magnetosphere, created by the interaction of the
solar wind with the Earth’s magnetic field, represents a huge
“laboratory” of various MHD turbulences. In different parts of
this laboratory (e.g., ion foreshock, magnetosheath, LL mag-
netopause, polar cusps, ionosphere, magnetotail) characteristic
parameters vary greatly from each other. There are shear flows,
different orientations of the magnetic field, different values
of the plasma β parameter, anisotropic magnetic pressure,
magnetic reconnection, etc. (see, e.g., Ref. [37] for a recent
review). Evidently, it is hard to seek an immediate realization
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of the proposed scheme of MHD shear turbulence in the
magnetized environment of the Earth. Still, certain areas can
be identified where a similar configuration and course of events
are realized. This, first of all, implies high-β regions with shear
flows and a mean magnetic field parallel to the flow velocity.
Generally, such regions are in the magnetotail, magnetosheath,
and cusp, but a definite view can be obtained after a detailed
investigation of the dynamical processes therein.

The specific nature of nonlinear processes, which we focus
on in our study is, in many respects, a consequence of the shear-
induced transient linear dynamics described in Refs. [20,38–
40]. We, particularly, follow a recent paper [40] in which the
linear dynamics of pseudo-Alfvén waves (P-AWs) and shear-
Alfvén waves (S-AWs) is described in a 3D MHD flow with
linear shear and a parallel magnetic field. Specifically, it is
shown there that:

(1) Counter-propagating P-AWs are coupled to each other,
while S-AWs are not coupled to each other, but are asymmetri-
cally coupled to P-AWs; S-AWs do not participate in the linear
dynamics of P-AWs.

(2) The linear coupling of counter-propagating waves
determines the transient growth (over-reflection).

(3) The transient growth of S-AWs is somewhat smaller
compared with that of P-AWs.

(4) Waves with a smaller streamwise wave number, ky ,
exhibit stronger transient growth.

(5) Maximal transient growth (and over-reflection) of the
wave energy occurs for 2D waves with kz = 0.

These preliminary linear results served as a natural starting
point of the present study of nonlinear dynamics of 2D
perturbations with kz = 0 and a white-noise initial spectrum
in the k plane using DNS with a spectral code.

The paper is organized as follows. Section II is devoted
to the physical model and derivation of dynamical equations
in the spectral plane. The DNS of the turbulence dynamics
is presented in Sec. III. In Sec. IV, we perform an analysis
of the numerical results, focusing on the activity of linear
and nonlinear processes in the spectral plane. A summary and
discussion are given in Sec. V.

II. PHYSICAL MODEL AND EQUATIONS

The motion of an incompressible conducting fluid with
constant viscosity, ν, and ohmic resistivity, η, is governed by
the basic equations of MHD,

∂U
∂t

+ (U · ∇) U = −∇P

ρ
+ (B · ∇) B

4πρ
+ ν∇2U, (1)

∂B
∂t

= ∇ × (U × B) + η∇2B, (2)

∇ · U = 0, (3)

∇ · B = 0, (4)

where ρ is the fluid density, U is the velocity, B is the magnetic
field, and P is the total pressure, equal to the sum of the thermal
and magnetic pressures.

Equations (1)–(4) have a stationary equilibrium solution: an
unbounded plane Couette flow along the y axis with a linear

shear of velocity in the the x direction, U0 = (0, −Sx,0),
and threaded by a uniform background magnetic field parallel
to the flow, B0 = (0,B0y,0). Without loss of generality, the
constant shear parameter S and B0y are chosen to be positive,
S,B0y > 0. The equilibrium density ρ0 and total pressure
P0 are spatially constant. Such a simple configuration of an
unbounded flow with a linear shear of the velocity profile
corresponds, for example, to plasma flow in astrophysical
accretion disks in the framework of the widely used local
shearing box approximation (e.g., Ref. [31]) as well as to flows
of magnetized plasma in the laboratory (e.g., Refs. [28,29]).
It allows us to grasp key effects of shear on the perturbation
dynamics and, ultimately, on the resulting MHD turbulent state
in kinematically nonuniform plasma flows.

Consider 2D perturbations of the velocity, total pressure,
and magnetic field, u, p, and b, which are independent of the
vertical z coordinate (∂/∂z = 0), about the equilibrium. In this
case, the evolution in the horizontal (x,y) plane is decoupled
from that of the z components of the perturbed velocity
and magnetic field, so we set them to zero: uz = bz = 0.
Representing the total fields as the sum of the equilibrium and
perturbed values, U = U0 + u, P = P0 + p, and B = B0 + b,
substituting these into Eqs. (1)–(4), and rearranging the
nonlinear terms with the help of Eqs. (3) and (4), we arrive at
the following system governing the dynamics of perturbations
with arbitrary amplitude:

(
∂

∂t
− Sx

∂

∂y

)
ux

= − 1

ρ0

∂p

∂x
+ B0y

4πρ0

∂bx

∂y
+ ν∇2ux

+ ∂

∂y

(
bxby

4πρ0
− uxuy

)
+ ∂

∂x

(
b2

x

4πρ0
− u2

x

)
, (5)

(
∂

∂t
− Sx

∂

∂y

)
uy

= Sux − 1

ρ0

∂p

∂y
+ B0y

4πρ0

∂by

∂y
+ ν∇2uy

+ ∂

∂x

(
bxby

4πρ0
− uxuy

)
+ ∂

∂y

(
b2

y

4πρ0
− u2

y

)
, (6)

(
∂

∂t
− Sx

∂

∂y

)
bx

= B0y

∂ux

∂y
+ η∇2bx + ∂

∂y
(uxby − uybx), (7)

(
∂

∂t
− Sx

∂

∂y

)
by

= −Sbx + B0y

∂uy

∂y
+ η∇2by − ∂

∂x
(uxby − uybx), (8)

∂ux

∂x
+ ∂uy

∂y
= 0, (9)

∂bx

∂x
+ ∂by

∂y
= 0. (10)
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We solve Eqs. (5)–(10) in a rectangular 2D domain with
sizes Lx and Ly , respectively, in the x and y directions,
−Lx/2 � x � Lx/2 and −Ly/2 � y � Ly/2, divided into
Nx × Ny cells. Since we consider an unbounded flow with
linear shear, we adopt boundary conditions commonly used
in similar cases of MHD simulations of astrophysical disk
flows in the local shearing box approximation (e.g., Refs. [31–
33,35,41]). Namely, for the perturbations of all quantities, we
impose periodic boundary conditions in the y direction and
shearing-periodic in the x direction. That is, the x boundaries
are initially periodic, but shear with respect to each other as
time goes by, becoming, again, periodic at discrete moments
tn = nLy/SLx , where n = 1,2, . . . is a positive integer. This
can be written as

f (x,y,t) = f (x + Lx,y − SLxt,t) (x boundary),

f (x,y,t) = f (x,y + Ly,t) (y boundary),

where f ≡ (u,p,b) denotes any of the perturbed quantities.
These boundary conditions ensure natural evolution of shear-
ing plane waves within the domain, as it would be in an
unbounded constant shear flow.

A. Energy equation

In this subsection, we derive dynamical equations for
kinetic and magnetic energies in order to gain insight into
the interplay of the flow shear and nonlinearity in the self-
sustenance of perturbations. The perturbation kinetic and
magnetic energies are defined, respectively, as

EK = ρ0u2

2
, EM = b2

8π
.

Using the main Eqs. (5)–(10) and the above shearing box
boundary conditions, after some algebra, we can readily derive
the evolution equation for the domain-averaged kinetic and
magnetic energies,

d

dt
〈EK〉

= S〈ρ0uxuy〉 + B0y

4π

〈
ux

∂bx

∂y
+ uy

∂by

∂y

〉

+ 1

4π

〈
uxby

∂bx

∂y
+ ux

2

∂b2
x

∂x
+ uy

2

∂b2
y

∂y
+ uybx

∂by

∂x

〉

− ρ0ν〈(∇ux)2 + (∇uy)2〉, (11)

d

dt
〈EM〉

= S

〈
−bxby

4π

〉
+ B0y

4π

〈
bx

∂ux

∂y
+ by

∂uy

∂y

〉

+ 1

4π

〈
bx

∂

∂y
(uxby) + b2

x

2

∂ux

∂x
+ b2

y

2

∂uy

∂y
+ by

∂

∂x
(uybx)

〉

− η

4π
〈(∇bx)2 + (∇by

)2〉, (12)

where the angle brackets denote a spatial average, 〈· · · 〉 =∫∫
. . . dxdy/LxLy , with the integral being taken over an entire

domain. Adding up Eqs. (11) and (12), the cross terms of linear
origin, proportional to B0y , and nonlinear terms cancel out due
to the boundary conditions, and we obtain the equation for the
total energy E = EK + EM ,

d〈E〉
dt

= S

〈
ρ0uxuy − bxby

4π

〉
− ρ0ν〈(∇ux)2

+ (∇uy

)2〉 − η

4π
〈(∇bx)2 + (∇by)2〉. (13)

The first term on the right-hand side of Eq. (13) is the
shear parameter, S, multiplied by the total stress in the
angle brackets. The total stress is the sum of the Reynolds,
ρ0uxuy , and Maxwell, −bxby/4π , stresses, which describe,
respectively, the exchange of kinetic and magnetic energies
between perturbations and the background flow in Eqs. (11)
and (12). Note that they originate from the linear terms
proportional to shear on the right hand sides of Eqs. (6) and (8).
These stresses also determine the rate of momentum transport
(see, e.g., Refs. [29,31,42]) and, thus, are one of the important
quantities characterizing shear flow turbulence. The second
and third terms describe energy dissipation due to viscosity
and resistivity, respectively. Note that the net contribution
from nonlinear terms has canceled out in the total energy
evolution, Eq. (13), after averaging over the domain. Thus,
only Reynolds and Maxwell stresses can supply perturbations
with energy, extracting it from the mean flow due to shear;
the other two terms are negative definite and dissipative.
In the case of shear flow turbulence studied below, these
stresses ensure energy injection into turbulent fluctuations.
The nonlinear terms, not directly tapping into the shear
flow energy and therefore not changing the total perturbation
energy, serve only to redistribute energy gained by means of
the stresses among Fourier harmonics of perturbations with
different wave numbers (see below). In the absence of shear
(S = 0), the contribution from the Reynolds and Maxwell
stresses disappears in Eq. (13) and hence the total perturbation
energy cannot grow, gradually decaying due to viscosity and
resistivity.

B. Spectral representation of the equations

Before proceeding further, we normalize the variables by
taking the shear time, S−1, as the unit of time, the Alfvén
speed, uA = B0y/(4πρ0)1/2, as the unit of velocity, 	 ≡ uAS−1

as the unit of length, and B0y as the unit of the magnetic field
perturbations:

St → t,

(
x

	
,
y

	

)
→ (x,y),

u
uA

→ u,

p

ρ0u
2
A

→ p,
b

B0y

→ b,
EK,M

ρ0u
2
A

→ EK,M.

Viscosity and resistivity are characterized by hydrodynamic,
Re, and magnetic, Rm, Reynolds numbers, defined here, for
convenience, in terms of uA and 	 as

Re = uA	

ν
= u2

A

νS
, Rm = uA	

η
= u2

A

ηS
.
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These numbers are also referred to, respectively, as viscous
and resistive Elsasser numbers (e.g., Ref. [35]). The strength
of the imposed mean magnetic field is measured by the ratio
of the mean flow kinetic energy to the magnetic energy within
the domain:

β = πρ0S
2L2

x

3B2
0y

= S2L2
x

12u2
A

= L2
x

12	2
.

For further analysis, we need to do a spectral representation
of the main equations. We decompose the perturbations into
SFHs,

f (r,t) =
∫

f̄ (k,t) exp(ik · r) d2k, (14)

where, as before, f ≡ (u,p,b) denotes the perturbations and
f̄ ≡ (ū,p̄,b̄) is their corresponding Fourier transforms (kz = 0
for z-independent 2D perturbations and d2k ≡ dkxdky). Sub-
stituting decomposition (14) into Eqs. (5)–(10) and taking into
account the above normalization, we arrive at the equations
governing the dynamics of perturbation SFHs in the spectral
plane, (

∂

∂t
+ ky

∂

∂kx

)
ūx

= −ikxp̄ + ikyb̄x − k2

Re
ūx + ikyN1 + ikxN2, (15)

(
∂

∂t
+ ky

∂

∂kx

)
ūy

= ūx − ikyp̄ + ikyb̄y − k2

Re
ūy + ikxN1 + ikyN3, (16)

(
∂

∂t
+ ky

∂

∂kx

)
b̄x = ikyūx − k2

Rm
b̄x + ikyN4, (17)

(
∂

∂t
+ ky

∂

∂kx

)
b̄y = −b̄x + ikyūy − k2

Rm
b̄y − ikxN4, (18)

kxūx + kyūy = 0, (19)

kxb̄x + kyb̄y = 0, (20)

where k2 = k2
x + k2

y (wave numbers are normalized by 	−1).
These spectral equations contain the linear as well as the
nonlinear, N1(k,t), N2(k,t), N3(k,t), and N4(k,t), terms
that are the Fourier transforms of corresponding linear and
nonlinear terms in the original Eqs. (5)–(10). The latter are
given by

N1(k,t) =
∫

d2k′[b̄x(k′,t)b̄y(k − k′,t)

− ūx(k′,t)ūy(k − k′,t)],

N2(k,t) =
∫

d2k′[b̄x(k′,t)b̄x(k − k′,t)

− ūx(k′,t)ūx(k − k′,t)],

N3(k,t) =
∫

d2k′[b̄y(k′,t)b̄y(k − k′,t)

− ūy(k′,t)ūy(k − k′,t)],

N4(k,t) =
∫

d2k′[ūx(k′,t)b̄y(k − k′,t)

− ūy(k′,t)b̄x(k − k′,t)]

and describe nonlinear triad interactions among the velocity
and magnetic field components of SFHs with different wave
numbers in the Fourier k plane. Equations (15)–(20), which are
the basis for subsequent analysis, involve two free dissipative
parameters, Re and Rm. Since we consider a finite domain
in the physical (x,y) plane, the perturbation dynamics also
depends on the smallest wave number available in this domain
or, equivalently, on its sizes Lx and Ly , which are the other
two free parameters of the problem. Given these parameters
and specific initial conditions, Eqs. (15)–(20) fully determine
the nonlinear dynamics of the considered system in the
Fourier plane. These equations form the mathematical basis
of our main goal: to investigate the character of nonlinear
processes and self-sustaining scheme of the (subcritical)
MHD turbulence in the k plane in this constant shear flow.
Since energy spectra and nonlinear transfers relate to energy
equations, following Refs. [16,32,35,43–45], below we derive
equations governing the evolution of kinetic and magnetic
spectral energies.

Multiplying Eqs. (15) and (16) by ū∗
x and ū∗

y , respectively,
combining and adding its complex conjugate, we arrive at
the equation for the nondimensional kinetic spectral energy
ĒK = |ūx |2 + |ūy |2,

∂ĒK

∂t
+ ∂

∂kx

(kyĒK ) = IK + IK−M + DK + NK, (21)

where

IK = ūx ū
∗
y + ū∗

xūy = −2kxky

k2
ĒK, DK = −2k2

Re
ĒK,

IK−M = iky(ū∗
x b̄x + ū∗

y b̄y − ūx b̄
∗
x − ūy b̄

∗
y),

and the nonlinear kinetic transfer function NK (k,t) is given by

NK (k,t) = i(kyū
∗
x + kxū

∗
y)N1(k,t)

+ ikxū
∗
x[N2(k,t) − N3(k,t)] + c.c.

Similarly, multiplying Eqs. (17) and (18) by b̄∗
x and b̄∗

y ,
respectively, combining and adding its complex conjugate, we
obtain the evolution equation for the nondimensional magnetic
spectral energy ĒM = |b̄x |2 + |b̄y |2,

∂ĒM

∂t
+ ∂

∂kx

(kyĒM ) = IM + IM−K + DM + NM, (22)

where

IM = −b̄x b̄
∗
y − b̄∗

x b̄y = 2kxky

k2
ĒM,

IM−K = −IK−M, DM = −2k2

Rm
ĒM
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and the nonlinear magnetic transfer function NM (k,t) is given
by

NM (k,t) = i(kyb̄
∗
x − kxb̄

∗
y)N4(k,t) + c.c.

By inspection of Eqs. (21) and (22), one can distinguish five
basic processes underlying the dynamics of ĒK and ĒM :

(1) The quantities kyĒK and kyĒM in the second terms on
the left-hand sides of Eqs. (21) and (22) are, respectively,
the fluxes of the kinetic and magnetic spectral energies
parallel to the kx axis. These terms are of linear origin,
coming from the convective derivative on the left-hand sides
of the main Eqs. (5)–(10), and therefore correspond to the
advection by the mean flow. In other words, background shear
flow makes the spectral energies (Fourier transforms) “drift”
in the k plane, and SFHs with ky > 0 and ky < 0 travel,
respectively, along and opposite the kx axis at a speed |ky |,
whereas SFHs with ky = 0 are not advected by the flow. Since∫

d2k∂(kyĒK,M )/∂kx = 0, this drift only transports SFHs
parallel to the kx axis, without changing the total kinetic and
magnetic energies.

(2) The first terms on the right-hand sides, IK and IM , are
associated with shear; i.e., they originate from linear terms
proportional to the shear parameter on the right hand sides of
Eqs. (6) and (8) and describe energy exchange between the
mean flow and individual SFHs. These terms are related to
the domain-averaged nondimensional Reynolds and Maxwell
stresses entering Eqs. (11) and (12) through

〈uxuy〉 = 1

2

∫
IK (k,t)d2k,

〈−bxby〉 = 1

2

∫
IM (k,t)d2k

and therefore serve as a main source of energy for SFHs
(with ky 
= 0), at the expense of which they can undergo
amplification. This shear-induced growth of perturbation SFHs
is in fact linear by nature and has a transient character due to
the drift in the k plane [20,38,39,46,47]. The SFHs, drifting
parallel to the kx axis, go through dynamically important
regions in the spectral plane, where energy-supplying linear
terms, IK and IM , and redistributing nonlinear terms, NK and
NM , are at work from small and intermediate wave numbers
almost up to the dissipation region at large wave numbers (see,
e.g., Fig. 6). In the case of turbulence studied below, IK and
IM describe the injection, respectively, of kinetic and magnetic
energies into turbulent fluctuations as a function of the wave
numbers (see also Refs. [32,35]).

(3) The second, cross terms on the right-hand sides, IK−M

and IM−K , describe exchange between kinetic and magnetic
spectral energies. They have opposite signs and therefore
cancel out in the total energy budget of SFHs [see Eq. (24)
below]. These terms are also of linear origin, corresponding
to terms proportional to B0y (linearized magnetic tension and
electromotive forces) in Eqs. (5)–(8).

(4) The third terms on the right-hand sides, DK and DM ,
describe the dissipation of kinetic and magnetic energies due
to viscosity and resistivity, respectively. Comparing these
dissipation terms with the energy-supplying terms IK and IM ,
we see that viscous and resistive dissipation are important
at large wave numbers k � kD = min(

√
Re,

√
Rm), where

kD denotes the effective wave number for which dissipation
effects start to play a role.

(5) The fourth terms on the right-hand sides, NK and
NM , describe nonlinear transfers, respectively, of kinetic and
magnetic energies among SFHs with different wave numbers
in the k plane. It follows from the definition of NK and NM

that their sum integrated over an entire wave-number plane is
equal to zero,∫

[NK (k,t) + NM (k,t)]d2k = 0, (23)

which is, in fact, a direct consequence of the vanishing of
the nonlinear terms in the total energy, Eq. (13), in the real
plane. This implies that the main effect of nonlinearity is
only to redistribute (scatter) energy drawn from the mean
flow among kinetic and magnetic components of perturbation
SFHs with different wave numbers, while leaving the total
(kinetic plus magnetic) spectral energy summed over all wave
numbers unchanged. In general, nonlinear transfer functions,
NK and NM , play a central role in MHD turbulence theory:
they determine cascades of spectral energies in k space, leading
to the development of their specific spectra. These transfer
functions are one of the main focuses of the present analysis.
We aim to explore how they operate in the presence of shear,
adopting the approach of Refs. [16,43], which numerically
studied the nonlinear dynamics of 2D perturbations in an
HD Couette flow by performing a full 2D Fourier analysis
of individual terms in the evolution equation for spectral
energy, thus allowing for anisotropy of spectra and cascades.
In particular, we show below that, like that in the HD
shear flow, nonlinear transfers in the quasisteady MHD shear
turbulence result in the redistribution of spectral energy among
wave-vector angles in the k plane, which we refer to as a
nonlinear transverse cascade, in contrast to classical HD or
MHD turbulence without background shear flow, where energy
cascade processes change only the wave-vector magnitude,
k = |k|, of SFHs (see, e.g., Ref. [25]).

Combining Eqs. (21) and (22), we obtain the equation for
the total spectral energy Ē = ĒK + ĒM :

∂Ē

∂t
+ ∂

∂kx

(kyĒ) = IK + IM + DK + DM + NK + NM.

(24)

As mentioned above, the linear cross terms responsible for
kinetic and magnetic energy exchange are absent in this
equation. The net effect of the nonlinear terms in the total
spectral energy budget over all wave numbers is zero according
to Eq. (23). Thus, as follows from Eq. (24), the only source
for the total perturbation energy is the integral over an entire
spectral plane

∫
(IK + IM )d2k that extracts energy from a vast

reservoir of shear flow and injects it into perturbations. Since
the terms IK and IM , as noted above, are of linear origin,
the energy extraction and perturbation growth mechanisms
are essentially linear by nature. The role of nonlinearity is to
continually provide, or regenerate those SFHs in the k plane
that are able to undergo transient growth, drawing on the mean
flow energy, and in this way feed the nonlinear state over
long times. This scenario of a self-sustained state, based on a
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subtle cooperation between linear and nonlinear processes, is
a keystone of the bypass concept of subcritical turbulence in
spectrally stable shear flows [10,12–15,17].

III. NONLINEAR EVOLUTION

We now turn to an analysis of the nonlinear evolution
of perturbations employing modern numerical methods. The
main emphasis is on the spectral aspect of the dynamics using
the mathematical formalism outlined in the previous section.
We start a fiducial run by imposing solenoidal random noise
perturbations of the velocity and magnetic field with spatially
uniform rms amplitudes 〈u2〉1/2 = 〈b2〉1/2 = 0.84 on top of
the equilibrium. The computational domain is a square of size
Lx × Ly = 400 × 400 and resolution Nx × Ny = 512 × 512.
The reason for taking a large domain is to encompass wave
numbers as small as possible at which, as shown below, the
effective transient amplification of SFHs and most of the
dynamical activity take place. The minimum and maximum
wave numbers of the domain are kx,min = ky,min = 2π/Lx =
0.016 and kx,max = ky,max = πNx/Lx = 4.02. The viscous
and resistive Reynolds numbers are fixed to the values Re =
Rm = 5 (corresponding to the magnetic Prandtl number of
unity Pr = Rm/Re = 1), so that the dissipation wave number,
kD , falls in this range, kD = √

Re = 2.24 < kx,max [48]. Note
also that for the domain size Lx = 400 the above-defined
parameter β = L2

x/12 = 1.33 × 104 is quite large, indicating
that the background magnetic field energy is low compared to
the kinetic energy of the mean flow and therefore the flow can
be regarded as weakly magnetized.

The subsequent time evolution with these initial conditions
was followed to tf = 600 (i.e., for a total of 600 shear times)
by solving the basic Eqs. (5)–(10) using the spectral SNOOPY

code [49]. The mean magnetic field B0 is conserved with time,
because the domain-averaged fluctuating (turbulent) fields, as
we checked, remain zero, 〈u〉 = 〈b〉 = 0, during the whole
run, thanks to the shearing box boundary conditions. SNOOPY

is a general-purpose code, solving HD and MHD equations,
including shear, rotation, weak compressibility, and several
other physical effects. It is based on a spectral (Fourier) method
allowing for the drift of harmonics in k space due to mean flow
(i.e., the shearing box boundary conditions are implemented
in the code). The Fourier transforms are computed using
the FFTW 3 library. Nonlinear terms are computed using a
pseudospectral algorithm [50], and antialiasing is enforced
using the “3/2 rule.” Time integration is performed by a
third-order Runge-Kutta scheme for nonlinear terms, whereas
an implicit scheme is used for viscous and resistive terms. This
spectral scheme uses a periodic remap algorithm in order to
continually follow the smallest wave number of the system in
the sheared frame moving with the flow. The code has been
tested and extensively used in a number of fluid dynamical and
astrophysical contexts (see, e.g., Refs. [35,51–56]).

Figure 1 shows the time development of the domain-
averaged perturbed kinetic, 〈EK〉, and magnetic, 〈EM〉, en-
ergies as well as the Reynolds 〈uxuy〉 and Maxwell −〈bxby〉
stresses. At the early stage of evolution, they all increase as
a result of linear transient growth of separate SFHs contained
in the initial conditions. Then, after about 250 shear times,
on reaching sufficient amplitudes in the nonlinear regime,
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FIG. 1. Evolution of the domain-averaged (a) perturbed kinetic,
〈EK〉, and magnetic, 〈EM〉, energies as well as (b) the Reynolds and
Maxwell stresses in the fiducial run. Data have been boxcar-averaged
over 60 shear times to make the plot readable. In the beginning,
all these quantities steadily grow as a result of shear-induced
transient amplification of separate SFHs. Then, at about t = 250, the
amplification saturates to a quasisteady turbulent state that persists
till the end of the run. The magnetic energy is a bit higher than
the kinetic one and the positive Maxwell stress dominates over the
negative Reynolds stress.

the energies and stresses settle down to a quasisteady state
of sustained turbulence (see Fig. 2) that does not decay and
persists until the end of the simulation at tf = 600. In this state,
the kinetic and magnetic energies are comparable: the ratio of
their domain- and time-averaged over the whole quasisteady
state values (denoted here and below, for the stresses, by double
angle brackets) is 〈〈EM〉〉/〈〈EK〉〉 = 1.28; that is, there is a
near-equipartition of the energy between kinetic and magnetic
components. The Maxwell stress is much larger than the
Reynolds stress, indicating that the turbulent transport and
energy extraction from the mean flow are dominated by the
magnetic field perturbations. The average of the domain-
averaged Maxwell stress over the last 350 shear times is
positive, 〈〈−bxby〉〉 = 84.5, while that of the domain-averaged
Reynolds stress is negative, 〈〈uxuy〉〉 = −10.4. As shown by
Eq. (13), the domain-averaged total stress must necessarily
be positive for maintenance of turbulence and therefore it is
the Maxwell stress that plays a decisive role in this process:
counteracting dissipation, it ensures continuous feeding and
sustenance of the turbulence at the expense of the mean shear
flow.

The structure of the velocity and magnetic field in the
quasisteady turbulent state (at t = 490) is depicted in Fig. 2.
These fields are chaotic, with uy and by [Figs. 2(b) and 2(d)]
having more elongated features in the y direction due to
shear compared to ux and bx [Figs. 2(a) and 2(c)]. At
this time, the normalized fluctuating velocity and magnetic
field are comparable, 〈u2

x〉 = 87.68, 〈u2
y〉 = 178.73, 〈b2

x〉 =
113.17,〈b2

y〉 = 238.64, and are much larger than their corre-
sponding initial values. Also, the y components are larger than
the x ones: 〈u2

x〉 < 〈u2
y〉, 〈b2

x〉 < 〈b2
y〉, which holds throughout
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FIG. 2. (Color online) Distribution of (a), (b) the velocity and (c), (d) the magnetic field components in the (x,y) plane in the fully developed
quasisteady turbulence at t = 490. This state is fairly nonlinear: ux and uy vary within limits comparable to the domain-averaged velocity of
the background flow (in nondimensional units 〈|U0|〉 = Lx/4 = 100), while bx and by are much larger than the background magnetic field
B0y = 1. Structures in the uy and by fields are elongated in the y direction due to shear.

the run. Within the domain, ux and uy reach maximum
values |ux |max = 51.53 and |uy |max = 70.15 comparable to
the average background flow velocity, 〈|U0|〉 = Lx/4 = 100,
and the bx and by have grown much larger, |bx |max = 70.61
and |by |max = 72.78, than the mean field B0y = 1. So, this
quasisteady MHD turbulence can be viewed as being strongly
nonlinear and weakly magnetized, since 〈b2〉1/2 � B0y .

The general behavior of the domain-averaged kinetic and
magnetic energies and stresses with time obtained here in the
2D case is qualitatively consistent with that typically found
in similar, but 3D, simulations of MHD turbulence driven by
the magnetorotational instability (MRI) in local models of
accretion disks with a net toroidal magnetic field along the
disk flow [31,33,34], as in the present setup. In both cases,
there are no exponentially growing modes in the considered
unbounded constant shear flows in the classical sense of linear
stability analysis [18,19]; i.e., the flows are spectrally stable.
In such flows, perturbations can grow only transiently during
finite times [20,38,39], which is thought to be a key factor
for the onset of subcritical turbulence [13–15]. One of the
basic characteristics of subcritical transition is its sensitivity
to the initial perturbation amplitude (e.g., Refs. [3,12,53,57]),
which is also observed here. We found that there exists
a critical amplitude for initial velocity and magnetic field
perturbations (at a given Lx , Re, and Rm) below which
turbulence is absent: there is only transient amplification
insufficient to trigger transition, which eventually decays due
to dissipation. By contrast, for initial amplitudes higher than
the critical value a turbulent transition does occur after a
phase of large enough transient growth, as is also evident

in Fig. 1. Specifically, at Re = Rm = 5, adopted here, the
critical amplitude turned out to be 〈u2〉1/2

crit = 〈b2〉1/2
crit = 0.34

(for the same type of initial noise spectrum for both velocity
and magnetic field perturbations), and in the fiducial run we
accordingly selected the initial rms amplitudes (=0.84) larger
than this in order to achieve turbulent regime. This confirms
that the turbulence we study here is subcritical, however, we
have not explored the transition process, that is, have not
pinned down the critical transition amplitude for different
values of the system parameters (domain size, Reynolds
numbers, etc.) in more detail. The problem of subcritical
transition in MHD shear flows deserves a special investigation
in its own right, but in the present analysis we are mainly
interested in the properties of the resulting self-sustaining
turbulence itself once it has settled into a quasisteady state. The
underlying physics of the onset and sustenance of subcritical
turbulence in spectrally stable HD shear flows—the bypass
concept—has been extensively studied in a number of papers
(see, e.g., Refs. [13,15] for a review), but extension to
MHD turbulence in spectrally stable magnetized shear flows,
to the best of our knowledge, has not been systematically
investigated yet. The equilibrium flow considered here with
a linear spanwise shear of mean velocity and streamwise
magnetic field is the simplest but important example of such
spectrally stable magnetized shear flows that allows us to grasp
specific processes determining the onset, self-sustenance, and
spectral characteristics of MHD turbulence in this kind of
flow. Deeper insight into the dynamics of such subcritical
MHD turbulence can be gained by performing an analysis in
spectral space.
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IV. TURBULENCE BEHAVIOR IN THE SPECTRAL PLANE

In this section, we focus on the analysis of the dynamics
of the quasisteady turbulent state in the Fourier plane. We
now explicitly calculate the individual terms in Eqs. (21)
and (22), which were classified and described in Sec. II, using
the simulation data. The SNOOPY code, being of the spectral
type, is particularly useful for this purpose, as it allows us to
directly extract Fourier transforms from the data.

Before proceeding to spectral analysis, we note that
generally a turbulent field and hence its Fourier transform
are quite noisy. To remove this noise and extract valuable
information on the trends in the turbulence dynamics, all
Fourier transforms (spectra) presented below are averaged
over 80 shear times. The interval between two successive
dumps in the code was set to 1 shear time, so the averaging is
represented by 80 snapshots. From now on we concentrate on
the evolution after the quasisteady saturated nonlinear state has
set in (i.e., at t � 250), so we can choose the starting moment
for averaging arbitrarily over the duration of this state, since
the result is practically independent of this moment by virtue
of the quasisteadiness of the process.

A. Energy spectra

Figure 3 shows the time-averaged spectra of the kinetic and
magnetic energies in the k plane that have been established
in the quasisteady turbulent state. Note that both spectra are
strongly anisotropic, with the magnetic energy spectrum being
broader than the kinetic energy one. For k � 0.5, they have
a similar elliptical shape inclined to the kx axis, whereas
at k � 0.5 these spectra differ in structure: isolines for the
magnetic energy divide into two sets of ellipses near the
center with the same inclination. This indicates that SFHs
with kx/ky > 0 have more energy than those with kx/ky < 0
at fixed ky . Since β � 1, the effect of the mean flow shear
prevails over that of the mean magnetic field, which leads
us to suppose that the anisotropy of these spectra might be
primarily due to shear [58]. These features of the kinetic and
magnetic energy spectra, which clearly distinguish them from
typical turbulent spectra in the classical shearless case [25],
arise as a consequence of the specific way in which the
terms of linear and nonlinear origin in Eqs. (21) and (22)
operate in the k plane. We show below that these terms are
anisotropic over wave numbers due to shear, resulting in a new
phenomenon—the transverse cascade of power in the spectral
plane—compared to the classical (isotropic) case.

The above time-averaged 2D spectra integrated over the
angle in the k plane, Ē

(k)
K,M = k

∫ 2π

0 ĒK,Mdφ, and represented
as a function of k are shown in Fig. 4. From intermediate wave
numbers k ∼ 0.2 up to dissipation wave numbers k ∼ kD =
2.24, both one-dimensional (1D) spectra exhibit power-law
dependence on k, however, with different spectral indices:
the kinetic energy spectrum is well fitted by k−1.4, and the
magnetic energy spectrum by k−2. At these wave numbers,
the spectral density of the magnetic energy is higher than
that of the kinetic one, but at smaller k � 0.2 it decreases
and becomes less than the kinetic one, both deviating from
the power law. These power-law parts of the spectra clearly
differ from the typical Iroshnikov-Kraichnan (IK) spectrum,

FIG. 3. (Color online) Time-averaged (a) kinetic and (b) mag-
netic energies’ spectra in the k plane pertaining to the quasisteady
turbulent state. These time averages are done over 80 shear times,
as described in the text. Isolines correspond to (a) the values
−4, −3.5, −3, −2, −1, and 0 of log10(ĒK ) and (b) to the values
−4, −3.5, −3, −2, −1, −0.5, −0.3, and 0 of log10(ĒM ). Both
spectra are anisotropic, having larger power at the kx/ky > 0 side. The
kinetic energy spectra is more concentrated at smaller wave numbers
than the magnetic one. The dashed rectangle in each plot encloses the
region of major activity of the dynamical terms in Eqs. (21) and (22),
which are shown in Fig. 5.

k−1.5, characteristic of classical 2D and 3D MHD turbulence
without background shear flow [25], though the kinetic energy
spectrum is still close to it. Different spectra of kinetic
and magnetic energies, following approximately power-laws
(though, with kinetic energy spectrum somewhat coincident
with the IK one), are also present in analogous 3D simulations
of MRI-driven MHD turbulence in the shearing box model
of a disk [35,45,59]. However, it was pointed out in those
studies that in the presence of differential rotation (shear)
and weak magnetization (β � 1) associated with disk flows,
which are in fact also shared by the 2D MHD shear flow
considered here, classical Kolmogorov or IK phenomenology
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FIG. 4. Kinetic and magnetic energy spectra from Fig. 3 inte-
grated over the angle in the k plane and plotted as a function of
k. From intermediate, k ∼ 0.2, to dissipation, k ∼ kD = 2.24, wave
numbers, a power-law behavior is observed in both spectra, though
with different spectral indices: k−1.4 for the kinetic and k−2 for the
magnetic energies.

is generally not applicable to turbulence dynamics, because
due to shear, energy injection from the mean flow into
turbulence can occur over a broad range of length scales
available in the flow, from the largest scale down to the
dissipation scale, which in turn prevents the development of
the proper inertial range of a spectrum in the classical sense
(see also Refs. [32,35]). So, the spectra obtained in those disk
simulations, despite being of the power-law type, are in fact
determined by the interplay between injection terms due to
the linear MRI, operating over a range of wave numbers,
and nonlinear terms in spectral space. The situation is similar
in the present problem. As shown below, the action of the
energy injection terms IK and, especially, IM extends over
a range of wave numbers in the k plane and is remarkably
anisotropic [see Figs. 5(a), 5(b), and 6]. As noted above, these
terms are responsible for the linear transient amplification
of SFHs and energy extraction from the mean flow, so in
this respect they play a similar role, i.e., supply turbulence
with energy, in our nonrotating case as the (transient) MRI
in rotating disk flows. Moreover, we demonstrate that there
exists a new phenomenon—the transverse nonlinear cascade
of spectral energy density—resulting from this anisotropy and,
ultimately, from shear. These new features are not common to
shearless MHD turbulence and hence it is not surprising that
Kolmogorov or IK theory cannot adequately describe shear
flow turbulence.

We have presented the energy spectra from two perspec-
tives: fully in the k plane in Fig. 3 and their angle-integrated
(over shells of constant |k|) versions in Fig. 4; the former is
obviously more informative than the latter. We emphasize that
angle integration of turbulent spectra and transfer functions
when they are anisotropic in the wave-number plane might
lead to the loss of essential information on the detailed
nonlinear dynamics, so we take a more general strategy of

Ref. [16] and represent energy spectra as well as injection and
nonlinear transfer terms in full in the k plane, in contrast
to previous related studies of MHD turbulence in shear
flows considering either such angle-integrated or reduced 1D
spectra (e.g., Refs. [32,35,41,45]). This allows us to obtain a
complete dynamical picture and understanding of the nature
of subcritical MHD turbulence in the presence of mean flow
shear.

B. Spectra of energy injection: IK and IM

To better understand the character of the above anisotropic
kinetic and magnetic energy spectra and nonlinear transfers, in
Fig. 5 we present the distribution of the time-averaged kinetic
and magnetic injection functions, IK and IM , cross terms,
IK−M and IM−K , and nonlinear transfer terms, NK and NM , in
the k plane in the quasisteady turbulent state. From this figure it
is seen that these terms differ in magnitude, and like the spectral
energies, all exhibit anisotropy over wave numbers, that is,
depend on the wave-vector angle. IK is mostly concentrated
at small wave numbers, k � 0.1 [Fig. 5(a)], being positive at
kx/ky < 0 [white (red and yellow) regions], where it increases
the kinetic energy of SFH, and negative at kx/ky > 0 [dark-
gray (blue) regions], where it takes kinetic energy from SFH
and gives it back to the flow. A net contribution of IK over
all wave numbers is, however, negative (i.e., 〈uxuy〉 < 0). On
the other hand, IM mostly operates at larger wave numbers,
0.05 � k � 0.5 [Fig. 5(b)], and is dominant and positive on
the kx/ky > 0 side [white (red and yellow) regions], where it
supplies SFH with magnetic energy. The net result of IM over
all wave numbers is a positive energy gain for perturbations
(i.e., 〈−bxby〉 > 0), which prevails over the net negative effect
of IK , as is also evident in Fig. 1(b), and maintains turbulence.
So, energy input for perturbation SFHs is provided by the
magnetic source term IM , which operates over a much broader
region in the k plane than IK does. We checked that such a
dependence of kinetic and magnetic energy injection terms on
wave numbers, in fact, is also seen for the linear evolution of
SFH; i.e., when the SFH drifts along the kx axis due to shear,
its kinetic energy first increases at kx/ky < 0, then decreases
after crossing the point kx = 0, while its magnetic energy starts
to increase at kx/ky > 0 during a few shear times and then
continues to oscillate at Alfvén frequency, ωA = uAky , and
constant amplitude (provided dissipation is neglected).

The linear cross terms, IK−M and IM−K [Figs. 5(c)
and 5(d)], are small compared to both IK,IM and nonlinear
NK,NM terms. In the spectral plane, the action of these terms
is somewhat opposite to that of the corresponding injection
terms. IK−M lowers the kinetic energy at small wave numbers
but increases it at intermediate and large wave numbers on
the kx/ky > 0 side, while IM−K lowers the magnetic energy at
intermediate and large wave numbers in the same quadrant and
increases at small wave numbers. As noted above, these cross
terms cancel out in the total energy, Eq. (24), and, because they
are much smaller than the other dynamical terms, do not play
any major role in the energy balance in Eqs. (21) and (22) too.

The difference between the injection wave numbers for the
kinetic and magnetic energies is demonstrated more clearly
in Fig. 6, showing these injection, nonlinear transfer, and
dissipation terms angle-integrated in the k plane, I (k)

K ,N
(k)
K ,D

(k)
K

043101-10



NONLINEAR TRANSVERSE CASCADE AND TWO- . . . PHYSICAL REVIEW E 89, 043101 (2014)

FIG. 5. (Color online) Maps of the time-averaged (a) kinetic, IK , and (b) magnetic, IM , energy injection terms, (c), (d) the cross terms
IK−M , IM−K , and the (e) kinetic, NK , and (f) magnetic, NM , nonlinear transfer terms in the k−plane in the state of quasisteady turbulence. The
time averages are obtained over an interval of 80 shear times (from 472 to 552 shear times), as described in the text. Kinetic energy injection
mostly occurs at small wave numbers, k � 0.1, and on the kx/ky < 0 side where IK > 0, while magnetic energy injection occurs mostly at
intermediate wave numbers, 0.05 � k � 0.5, on the kx/ky > 0 side where IM > 0, overall it is dominant over IK ; i.e., energy injection into
turbulence appears to be due mainly to the Maxwell stresses. The NK and NM terms transfer, respectively, the spectral kinetic and magnetic
energies anisotropically (transversely) in the wave-number plane, away from regions where they are negative, NK < 0, NM < 0 [dark gray and
black (blue)], to regions where they are positive, NK > 0, NM > 0 [light gray and white (yellow)]. The nonlinear terms are comparable to the
injection terms and both are about two orders of magnitude larger than the cross terms.
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FIG. 6. Kinetic and magnetic injection and nonlinear transfer
terms from Fig. 5 as well as dissipation terms integrated over the
angle in the k plane—(a) I

(k)
K , N

(k)
K , D

(k)
K and (b) I

(k)
M , N

(k)
M , D

(k)
M —and

represented as a function of k. Injection terms (dashed lines) operate
over a range of wave numbers, overlapping with nonlinear terms
(solid lines). The magnetic energy injection is larger than the kinetic
one. Both viscous and resistive dissipation (dot-dashed lines) are
relatively important only at k > kD = 2.24. The reference dotted
vertical line marks the maximum wave number, k = 0.5, of the
domains in Fig. 5. Shaded (gray) regions correspond to wave numbers
at which N

(k)
K < 0, N

(k)
M < 0, and hence the kinetic and magnetic

energies, respectively, are transferred, on average, away from these
wave numbers due to nonlinearity.

[Fig. 6(a)] and I
(k)
M ,N

(k)
M ,D

(k)
M [Fig. 6(b)], and represented as

a function of k. It is seen in this figure that the range of
wave numbers, where the injection terms are at work, extends
from the smallest wave numbers in the domain, kx,min, up to
k ∼ 1 comparable to the dissipation wave number kD . I

(k)
K

is positive at small wave numbers, reaching a maximum at
k ≈ 0.05, then becomes negative and vanishing at k > 0.12
(i.e., no longer injects kinetic energy). On the other hand,
I

(k)
M is positive and hence creates the turbulence’s magnetic

energy at all wave numbers, reaching a maximum at k ≈ 0.2,
which is about twice as large as that of I

(k)
K . Note in Fig. 6

that these injection and nonlinear transfer terms N
(k)
K and N

(k)
M

widely overlap. This implies that in the presence of shear,
there is not a single injection scale in the flow, as is usually
assumed in classical turbulence theory, but instead, energy
injection occurs all the way from the largest length scales
down to the dissipation scale. Therefore, although power-law
spectra for both the kinetic and the magnetic energies are
found at 0.2 � k � 2 (Fig. 4), they still cannot be considered
as being a proper inertial range, since energy is injected at
these intermediate scales (see also Refs. [32,35] for a similar
situation in the MRI-driven turbulence, where the injection
of energy, drawn from the mean flow, into turbulence occurs
over a range of scales at which nonlinear transfers operate as
well). In Fig. 6, it is also seen that in this wave-number range,
the dissipation terms are much smaller than the injection and
nonlinear transfer terms, so this part of the energy spectra are

in fact formed mainly as a result of the combined action of the
linear injection and nonlinear cascade.

C. Nonlinear transfers NK and NM : The essence
of the transverse cascade

We now move to describing the nonlinear kinetic and
magnetic transfer functions. As noted above, they do not
represent a new source of total energy for turbulence, but
only act to redistribute kinetic and magnetic spectral energies,
which are extracted from the mean flow, over wave numbers
and, in cooperation with injection terms, determine the
characteristics of spectra. So, our primary goal is to understand
how the nonlinear transfer terms work and, consequently, in
which directions energies cascade in the Fourier plane in the
presence of background shear. As mentioned in Sec. I, for a
purely HD constant shear (Couette) flow, which is spectrally
stable, it was shown in Ref. [16] that nonlinear transfer function
is anisotropic in the k plane, i.e., depends on the polar angle
due to shear and, as a consequence, leads to redistribution of
the spectral energy over wave-vector angles. This relatively
new process, termed the angular, or transverse cascade of
energy, has been shown to be essential for the maintenance
of the subcritical nonlinear state in this flow via the bypass
mechanism. Actually, identification of the transverse cascade
of energy has been made possible by virtue of representation of
the dynamics fully in the 2D spectral plane, without performing
angle integration, which would result in washing out a key
element of this process: the angular dependence (anisotropy)
of the transfer functions’ spectra. The findings in that paper
indicate that in HD shear flows, along with the direct and
inverse cascades quite well established in turbulence theory,
a new, transverse type of cascade can also take place, which,
in fact, appears to be as important as the former. Based on
these results, in the present paper we generalize a spectral
analysis of nonlinear dynamics given in Ref. [16] for the HD
constant shear flow to the MHD constant shear flow considered
here, with the aim of understanding the mechanism responsible
for the sustenance of the subcritical MHD turbulence in
question. Specifically, we examine whether there exists a
cooperative action of any kind between energy-injecting linear
and nonlinear transfer terms, like that occurring in HD shear
flows, capable of sustaining perturbations in spectrally stable
MHD shear flows.

Figures 5(e) and 5(f) show the distribution of the time-
averaged kinetic, NK , and magnetic, NM , nonlinear transfer
functions with wave numbers in the quasisteady turbulence,
alongside the injection terms, in order to easily see their
cooperative (correlated) action with the latter. As mentioned
above, both NK and NM are strongly anisotropic, i.e., depend
on the polar angle in the k plane. This anisotropy has
qualitatively the same character as that of IK , IM , IK−M , and
the 2D energy spectra in Fig. 3; that is, the spectra of all these
are inclined towards the kx axis due to shear. To bring out this
angular dependence more clearly, we integrated IK,IM and
NK,NM over k, from the smallest kmin = kx,min to the largest
kmax = kx,max values in the domain,

I
(θ)
K,M =

∫ kmax

kmin

IK,Mkdk, N
(θ)
K,M =

∫ kmax

kmin

NK,Mkdk
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FIG. 7. Kinetic and magnetic injection and nonlinear transfer
terms from Fig. 5 integrated over k—(a) I

(θ)
K , N

(θ)
K and (b) I

(θ)
M , N

(θ)
M —

and represented as a function of the wave-vector polar angle θ

(angles π < θ < 2π correspond to complex conjugates and are not
shown here). These plots clearly demonstrate the angular dependence
(anisotropy) of both the injection (dashed lines) and the nonlinear
transfer (solid lines) terms. Shaded (gray) regions correspond to
angles at which N

(θ)
K < 0, N

(θ)
M < 0, and hence kinetic and magnetic

energies, respectively, are transferred from these angles to other
angles due to nonlinearity; that is, a new phenomenon—a transverse
(angular) cascade of energy—takes place.

and represent them as functions of the polar angle θ in
Fig. 7. While the above-defined N

(k)
K and N

(k)
M describe energy

transfers in the direction of k, N
(θ)
K and N

(θ)
M describe energy

transfer along the azimuthal direction, perpendicular to k.
As shown in Figs. 5–7, the distributions of NK and NM over

wave numbers differ, leading to different types of cascades
for the kinetic and magnetic spectral energies. Since these
quantities are symmetric with respect to a change k → −k,
without loss of generality, everywhere below we concentrate
on the upper part (ky > 0) of the k plane. NK mainly operates
in two regions of the k plane: at small wave numbers, k � 0.1,
where it is negative [dark-gray and black (blue) region with
NK < 0 in Fig. 5(e), corresponding to the gray-shaded area
with N

(k)
K < 0 in Fig. 6(a)], and at intermediate wave numbers,

0.1 � k � 0.5, on the kx/ky > 0 side (0 � θ � π/2), where it
is positive [light-gray and white (yellow) region with NK > 0];
at all other wave numbers the kinetic transfer function is nearly
zero. On the other hand, NM mainly operates at 0.05 � k � 1
[see also Fig. 6(b)], is positive at 0.3π � θ � π [light-gray
and white (yellow) region with NM > 0 in Fig. 5(f)], and is
negative at 0 � θ � 0.3π [dark-gray and black (blue) region
with NM < 0]; at all other wave numbers the magnetic transfer
term is nearly zero. Note also that the distributions of NK and
NM look somewhat similar to those of the linear exchange
terms IK−M and IM−K , respectively, but as noted above, the
latter are two orders of magnitude smaller than the former.

By definition, these nonlinear transfer functions redistribute
the corresponding spectral energies away from the regions in
the k plane where they are negative to the regions where they
are positive. The kinetic energy injection due to IK occurs,

as described above, at small wave numbers (k � 0.1) with
π/2 < θ < π , where IK > 0 [see also Figs. 6(a) and 7(a)],
but the NK term is negative there, transferring kinetic energy
away from these injection wave numbers to intermediate wave
numbers, k � 0.1, with 0 � θ � π/2, where NK > 0. This
picture of spectral kinetic energy transfer, or cascade towards
larger wave numbers, is also evident in Fig. 6(a), where
the angle-integrated N

(k)
K changes from negative to positive

at about k = 0.1, consistent with the flow of kinetic energy
away from k � 0.1 to k � 0.1. The cascade behavior for the
turbulent magnetic energy is different from that of the kinetic
energy. The magnetic energy injection due to IM occurs at
intermediate wave numbers (0.05 � k � 1) for 0 < θ < π/2,
where IM > 0 [see also Figs. 6(b) and 7(b)], but the NM term,
which is mostly negative there, transfers the magnetic energy
away from this injection region to its neighboring region on
the left, with slightly smaller wave numbers but larger polar
angles 0.3π � θ � π , where NM is positive. This cascade
of magnetic energy to smaller wave numbers is more clearly
shown in Fig. 6(b), where the angle-integrated N

(k)
M changes

from positive to negative at around k = 0.17, indicating the
flow of magnetic spectral energy from k � 0.1 to k � 0.1.

Thus, in shear MHD turbulence, the kinetic and mag-
netic energies are transferred both along the wave vector,
corresponding to familiar direct and inverse cascades, and
transversely (perpendicular) to it (i.e., over angles θ ). Just
this second type of nonlinear cascade, better characterized by
N

(θ)
K and N

(θ)
M (Fig. 7), is a new effect of shear and is discussed

more in the next subsection; it is absent in classical shearless
MHD turbulence.

As stressed in Ref. [16], the transverse cascade of energy
appears to be a generic feature of nonlinear dynamics of per-
turbations in spectrally stable shear flows, so the conventional
description of shear flow turbulence solely in terms of direct
and inverse cascades, which leaves such a nonlinear trans-
verse cascade out of consideration, might be incomplete and
misleading. We emphasize that in the present case revealing
the complete picture of these nonlinear cascade processes has
become largely possible due to carrying out the analysis in
the spectral plane. Because of the shear-induced anisotropy of
cascade directions, only angle-integrated transfer functions in
Fig. 6 (which are, in fact, typically used in most numerical
studies of shear MHD turbulence; e.g., Refs. [32,35,41,45]),
clearly, are not fully representative of the actual, more general
nonlinear redistribution of the spectral energies in the k
plane, which also includes transfer with respect to wave-vector
angles: the transverse cascade.

D. Interplay of the linear injection and nonlinear
transverse cascade

We have seen above that the nonlinear redistributions of
spectral kinetic and magnetic energies over the wave-vector
polar angle, θ , in the k plane, termed the transverse cascade,
are due to shear-induced dependence of the nonlinear transfer
functions NM and NM on this angle. This can be better
appreciated from Fig. 7, showing the N

(θ)
K and N

(θ)
M introduced

in previous subsection. They exhibit different dependences
over θ , resulting in different characters of the transverse
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cascade for the kinetic and magnetic energies. Note the
opposite relative trends between I

(θ)
K and N

(θ)
K [Fig. 7(a)] and

between I
(θ)
M and N

(θ)
M [Fig. 7(b)] with respect to θ :

I
(θ)
K � 0 and N

(θ)
K > 0 at 0 � θ � π/2,

I
(θ)
K � 0 and N

(θ)
K ≈ 0 at π/2 < θ � π.

On the other hand,

I
(θ)
M � 0 and N

(θ)
M � 0 at 0 � θ � 0.3π,

I
(θ)
M ≈ 0 and N

(θ)
M > 0 at 0.3π � θ � π.

This implies that the region of the k plane where SFHs are
replenished with kinetic energy by nonlinearity (i.e., where
NK > 0) lies on the right side of the kinetic energy injection
region with IK > 0, whereas the region where SFHs are
replenished with magnetic energy by nonlinearity (i.e., where
NM > 0) lies on the left side of the magnetic energy injection
region with IM > 0, as also shown in Fig. 5. As explained
below, this specific arrangement of the injection and nonlinear
redistribution areas for the magnetic energy in the spectral
plane appears to be crucial to the sustenance of the turbulence.

After characterizing the specific activity of the linear
injection and nonlinear transfer terms in the k plane associated
with the presence of shear, we now consider the evolution
of SFHs in quasisteady turbulence and identify a mechanism
sustaining this state. As noted above, apart from these terms,
Eqs. (21) and (22) also contain terms describing drift of SFHs
in the spectral plane due to shear flow. In the upper half-plane
(ky > 0) we focus on, all SFHs drift along the kx-axis direction
and cross the injection and transfer regions in succession.
Since the turbulence is quasisteady, these three basic processes
involved in the spectral Eqs. (21) and (22)—linear drift
of SFHs, energy injection, and nonlinear transfer—together
with viscous and resistive dissipation, are in subtle balance,
or cooperation, resulting in the closed (positive) feedback
loop that energetically maintains this state. We interpret the
workings of this loop as follows. Let us start the loop cycle.
The nonlinear transfer functions NK and NM supply (from
a previous cycle) SFHs with kinetic energy mainly at wave
numbers with polar angles 0 � θ � 0.6π and 0.7π � θ � π ,
where NK,N

(θ)
K > 0, and magnetic energy at 0.3π � θ � π ,

where NM,N
(θ)
M > 0 [see Figs. 5(e), 5(f), and 7]. Then these

SFHs drift along the kx direction and enter the injection
regions, where IK > 0 and IM > 0. As a result, the kinetic
energy of SFHs with ky � 0.1 and the magnetic energy of
SFHs with ky � 0.05 grow at the expense of the mean flow:
just at this stage the kinetic and magnetic energies are being
injected into the turbulence due to IK and IM from the mean
flow. Then the SFHs move into the regions where NK < 0 and
NM < 0, and hence these nonlinear terms now act to transfer
part of the kinetic and magnetic energies from the amplified
SFHs back, respectively, to the regions where NK > 0 and
NM > 0, from which these SFHs started off, in this way
regenerating new SFHs there (positive nonlinear feedback).
Towards the end of the cycle, part of the original SFH’s kinetic
energy is returned to the mean flow, since IK � 0 at 0 � θ �
π/2, so effectively there is no net gain of the turbulent kinetic
energy from the mean shear flow; the second part, which goes
into the new SFHs, is taken from the magnetic energy via the

nonlinear exchange by positive NK (at ky � 0.1); and the third
part is gradually dissipated due to viscosity as the SFH drifts
further towards larger wave numbers (k � kD). So, during each
cycle, the SFHs gain primarily magnetic energy from the mean
flow due to the injection term IM . Part of this magnetic energy
is transformed by nonlinearity into the kinetic, as mentioned
above, and the other part into the magnetic energies of the
newly created SFHs. The rest of the magnetic energy is
dissipated due to resistivity. As shown in Figs. 5(f) and 7(b), in
the k plane, the magnetic injection region lies on the right side
of the region of its nonlinear regeneration where NM > 0. As a
consequence, these new (regenerated) SFHs will drift through
the same cycle and the whole process of (magnetic) energy
extraction from the mean flow will be repeated. In this way, a
positive feedback loop—a cooperative interplay of the linear
transient amplification and nonlinear transverse redistribution
of the magnetic spectral energy—is established, ensuring the
sustenance of a quasisteady turbulent state at the expense of
the background flow energy. Such a constructive regeneration
of those SFHs due to nonlinearity, which can extract shear flow
energy during the linear transient amplification process, is the
basis for the sustenance of subcritical turbulence in spectrally
stable shear flows in the framework of the bypass concept [13].

We have seen that a principal role in the above-described
MHD self-sustaining mechanism is played by magnetic field
perturbations that actually feed turbulence: SFHs, which are
able to extract energy from the shear flow by means of the
Maxwell stresses (i.e., by IM ), are continuously repopulated by
the nonlinear magnetic transfer term. This nonlinear positive
feedback for the magnetic perturbations is probably related
to the fact that the Maxwell stress has the “right” positive
sign to supply turbulence [Fig. 1(b)]. By contrast, the injection
region for the kinetic energy in the k plane lies to the left
and below the main region of its nonlinear regeneration [at
0 � θ � π/2, where NK > 0; see Figs. 5(e) and 7(a)]. As a
result, the majority of new SFHs, drifting along the kx axis,
cannot cross the injection region and thus continuously gain
the kinetic energy from the flow; even the small fraction of new
SFHs that can cross this region eventually returns the kinetic
energy to the flow where IK < 0. In other words, the nonlinear
feedback for the kinetic energy does not operate in a similar,
constructive, manner as that for the magnetic energy. This may
be related to the Reynolds stress being negative [Fig. 1(b)] and
hence ineffective in feeding turbulence with kinetic energy. So,
in the 2D MHD shear turbulence considered here, unlike the
Maxwell stress, the Reynolds stress cannot provide the right
sign for transport.

V. DISCUSSION AND SUMMARY

In this paper, we have studied the characteristics and
self-sustaining mechanism of subcritical MHD turbulence in
incompressible magnetized spectrally stable shear flows via
DNS using the spectral code SNOOPY. We have examined how
the background shear flow interacts with the turbulent fluctua-
tions of the incompressible 2D MHD equations to produce
a self-sustained turbulence. The analysis of the turbulence
dynamics was carried out in the Fourier plane. To keep the
problem as manageable as possible and, at the same time, not
to omit key effects of shear on the dynamics of turbulence,
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as the base flow we took the simplest but important case of
plane MHD Couette flow with linear shear and an imposed
background uniform, weak, magnetic field parallel to it. This
flow configuration is linearly stable (with decaying linear
perturbations at long times) according to classical (modal)
stability theory, and hence the only cause of transition to
turbulence can be a linear transient amplification of (magnetic
field) perturbations due to the non-normality associated with
shear at streamwise wave numbers ky < S/uA. Consequently,
the considered 2D MHD turbulence is subcritical by nature. To
understand its sustaining mechanism, we Fourier transformed
basic MHD equations and derived evolution equations for
the perturbed kinetic and magnetic spectral energies in the
wave-number plane. In these spectral equations, using the
simulation results, we calculated individual terms, which
are divided into two types: terms of linear and nonlinear
origin. The terms of linear origin—the Maxwell and Reynolds
stresses—are responsible for energy exchange between the
turbulence and the mean flow through transient amplification
of perturbation harmonics due to shear. However, as we have
shown, only the positive Maxwell stress appears to be a
dominant (magnetic) energy injector for the turbulence; it is
much larger than the Reynolds stress, which has a negative
sign and therefore does not contribute to the turbulent kinetic
energy gain. Another linear term due to shear in these equations
makes the spectral energies drift in the spectral plane parallel
to the kx axis. The nonlinear terms, which do not directly
draw the mean flow energy, act to transversely redistribute
this energy in the Fourier plane, continually repopulating
perturbation harmonics that can undergo transient growth.
Thus, we have demonstrated that in spectrally stable shear
flows, the subcritical MHD turbulent state is sustained by the
interplay of linear and nonlinear processes: the first supplies
energy for turbulence via the shear-induced transient growth
mechanism of magnetic field perturbations (characterized by
the Maxwell stresses), and the second plays the important
role of providing a positive feedback that makes this transient
growth process recur over long times and compensate for
high-k dissipation due to viscosity and resistivity.

This picture is consistent with the well-known bypass
scenario of subcritical turbulence in spectrally stable shear
flows [13] and differs fundamentally from the usual (super-
critical) turbulence scenario, which is based on exponentially
growing perturbations in a system that permanently supply tur-
bulent energy and do not require nonlinear (positive) feedback
for its sustenance. Such a cooperative action of linear transient
growth and nonlinear transfer mechanisms relies on anisotropy
of the energy spectra, injection, and nonlinear cascades in the
spectral plane (see Fig. 5), which is ultimately attributable
to the flow shear. This shear-induced anisotropy, i.e., the
dependence of spectra and nonlinear transfers on the polar
angle in the k plane, as we found and analyzed here in the case
of MHD flows, appears to be inherent in shear flow turbulence;
a similar anisotropy exists in HD shear flows (see Ref. [16]
for details). It differs from the typical anisotropy of classical
(shearless) MHD turbulence in the presence of a (strong)
background magnetic field (e.g., Ref. [23]) and changes the
classical view on nonlinear cascade processes: traditionally,
the net action of nonlinear turbulent processes is interpreted
as either a direct or an inverse cascade (e.g., Ref. [25]). Our

analysis demonstrates, however, that in MHD shear flows, like
HD ones, the dominant nonlinear process, resulting from the
spectral anisotropy, is in fact the redistribution of perturbation
SFHs over wave-vector angles. (Probably for this reason, in
our simulations with background shear we did not observe the
typical 2D coherent magnetic structures that grow via merging
due to inverse cascade of magnetic helicity [60,61]). These
anisotropic energy transfers in Fourier space have been termed
nonlinear transverse redistribution, or the transverse cascade.
In the considered flow, the nonlinear transverse cascade plays
a vital role in the long-term sustenance of turbulence: it
redistributes mainly magnetic spectral energy over different
angles in the k plane such that to continually regenerate
those harmonics which, drifting in the spectral plane, have
the potential to undergo transient growth, extracting energy
from the mean flow. This indicates that the transverse cascade
of spectral (magnetic) energy appears to be characteristic
of MHD turbulence in shear flows, so the conventional
characterization of nonlinear MHD cascade processes in the
presence of the flow shear in terms of direct and inverse
cascades, which ignores the transverse cascade, should be
generally incomplete and misleading. Identification of this
new—transverse—type of nonlinear cascades and its role in
the maintenance of shear MHD turbulence represents one of
our main results.

We showed that as a result of anisotropy of nonlinear
transfers in the k plane, kinetic and magnetic energy spectra are
also highly anisotropic (see Fig. 3). These spectra integrated
over the wave-vector angle exhibit power-law behavior for
intermediate wave numbers, though with different spectral
indices: k−1.4 for the kinetic and k−2 for the magnetic energies.
Despite this, the angle-averaged spectra we found should
not be regarded as truly inertial ranges, because the stresses
inject kinetic and magnetic energies into turbulence over a
broad range of wave numbers—from the largest scales in
the domain down to the shortest scales comparable to the
dissipation scale—well overlapping with the nonlinear transfer
terms (see Figs. 6 and 7). So, these spectra are determined by
the combined effect of linear injection and nonlinear transfer
terms. This is in contrast to the usual forced turbulence case,
where energy is injected (by external forcing) in a narrow
wave-number band and subsequent development of spectra
is due to nonlinearity only (e.g., Refs. [25,29,30]). As noted
above, the energy injection by the stresses occurs through the
transient amplification of perturbation Fourier harmonics due
to shear, implying that the shear plays an important dynamical
role at large and intermediate scales (�uA/S). However, the
angle averaging of anisotropic spectra (and also of transfer
functions) in shear flows, as often done in similar cases, might
lead to the loss of essential information about the spectral
characteristics of shear turbulence because of its angular
dependence too.

In the context of the spectral indices, it is interesting to point
out that in some regions of the Earth’s magnetotail, a magnetic
energy spectrum with a slope close to that obtained here, k−2,
is observed [37]. It is hard to attribute this observational result
to either the Kolmogorov or the IK spectra. This may suggest
the influence of shear flow on the dynamics of the magnetotail
turbulence and formation of its spectrum. The way we see it,
definite conclusions can be drawn by performing a numerical
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analysis similar to that presented here for a specific 3D model
configuration of the magnetotail.

In this paper, we have considered 2D dynamics, and a brief
discussion of 3D MHD turbulence in magnetized shear flows is
in order. According to the classical view, there is a fundamental
difference in the nonlinear dynamics of 2D versus 3D HD
processes: 3D ones are characterized by a direct cascade of
energy; 2D ones, by inverse cascade. By contrast, in MHD,
the nonlinear dynamics of 2D and 3D processes are similar
in the sense that cascade directions of characteristic quantities
(energy, helicity, etc.) are identical (see, e.g., Ref. [25]). As for
the transverse cascade analyzed in this paper, it occurs in HD as
well as in MHD shear flows. It is well known that in HD shear
flows, 2D turbulence is not maintained and dies out (without
external forcing); i.e., inverse cascade modified by transverse
cascade is unable to sustain turbulence (HD turbulence in shear
flows is usually 3D). The present study demonstrates that,
unlike HD shear flows, self-sustained 2D turbulence can exist
in MHD shear flows owing to the transverse cascade. Being
dependent on the shear, the transverse cascade is expected
to occur and play an important role in the dynamics of 3D
MHD shear turbulence too. But further studies should clarify
whether the nonlinear dynamics with the third z direction
(perpendicular to the flow plane) represents a mere extension
of the basic self-sustaining process described here in two
dimensions or introduces a qualitatively new contribution. In
any case, the transverse cascade will remain a vital ingredient
in the self-sustenance of turbulence in three dimensions too.
Although our analysis is limited to two dimensions, since these
are the streamwise and shearwise directions, it allows us to
bring out a basic mechanism underlying the self-sustenance
(via interplay of linear transient amplification and nonlinear
transverse cascade processes) and properties of subcritical
MHD shear turbulence.

Finally, we would like to discuss the applicability and
relevance of our approach to the MRI-driven 3D MHD
turbulence in astrophysical disks. Like the MHD shear flow
considered here, disk flows are also weakly magnetized [36,42]
and hence dominated by shear-induced (transient) effects.
Analysis of the dynamics of MRI turbulence in spectral
space is important in order to understand its basic nonlinear
cascade properties, which play a decisive role in various related
processes such as the dependence of turbulence saturation
amplitude (turbulent transport) on viscosity and resistivity
(in terms of the magnetic Prandtl number [35,51,54,62]),
effective turbulent dissipation [32,45], emergence of large-
scale coherent structures (zonal flows [63–65]), and dynamo
action [41,52,66–68]. A spectral analysis of fully developed
MRI turbulence in magnetized disks has been carried out in
a number of studies [32,35,41,45], as mentioned throughout
the text. In these papers, the individual terms in the evolution
equation for the kinetic and magnetic spectral energies are
examined in wave-number space, as also done here. However,
the main focus of these studies was on the dissipative properties

of turbulence, which depend on the wave-number magnitude
k only, so energy spectra, injection and nonlinear transfer
functions angle-averaged in k space were used to infer the
injection wave numbers and cascade directions as well as the
dissipation wave numbers. Evidently, such angle-integrated
spectral quantities give energy cascade features (direct and
inverse) only along the k direction. But, since one of the
main causes of the MRI in disks is shear associated with
their differential rotation (see, e.g., [42]), one would expect
the dynamics of the resulting turbulence to be essentially
anisotropic in k space (see also Refs. [31,35]), involving
nonlinear transverse cascades, similar to those described here,
at work. This transverse cascade, arising from the angular
dependence of nonlinear spectral transfer functions, is elusive
under angle integration and therefore was missing in these
studies. To the best of our knowledge, a more complete spectral
analysis of MRI-driven turbulence dynamics in 3D Fourier
space has not been done yet.

Such a spectral analysis is especially relevant and important
for understanding the nature of MRI turbulence in zero
net magnetic flux and azimuthal (toroidal) magnetic field
configurations, where the linear MRI is manifested as tran-
siently growing nonaxisymmetric modes [31,38]; that is, no
exponential instability exists in these cases and hence the onset
of the MHD turbulence should be subcritical. This subcritical
MRI turbulence in disks is currently the subject of active
research in the disk community. Although its characteristics in
the presence of an imposed nonzero net azimuthal field have
been studied extensively (e.g., Refs. [31,33,34]), the main
focus was on the effects of viscosity and resistivity on the
saturation properties of turbulence, so no clear-cut picture of
its basic sustaining mechanism was presented. For the zero net
flux case, it is thought that some type of MHD dynamo action
must be operative, which generates a large-scale azimuthal
field able to sustain the turbulence (e.g., Refs. [41,52,66–68]).
The configuration considered here, with a parallel magnetic
field, is in fact equivalent to disk flows with an azimuthal
background field in the local shearing box model (which, in
addition, includes rotation). So, based on this analogy, we
speculate that the sustenance mechanism of subcritical MHD
shear turbulence presented here can be realized in disk flows
too and be responsible for a long-lived MRI turbulence in
them. To investigate this in more detail, one should generalize
a similar type of spectral analysis of turbulence dynamics in
3D Fourier space in disk flows with nonzero net azimuthal
magnetic field in the shearing box approximation.
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